Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Error Analysis of Center-of-Gravity Measurement Techniques

1995-02-01
950027
The height of a vehicle's center-of-gravity (CG) is one factor that influences its handling characteristics. A number of height methods are used to measure CG within the automotive industry. This research determined which method has the greatest potential to produce accurate CG height measurements, given anticipated measurement tolerances. Several techniques for measuring vehicle CG height were analyzed mathematically. The contributions of various parameters to total error were determined and the total error inherent in each method was then compared.
Technical Paper

Evaluation of Experimental Restraints in Rollover Conditions

1995-11-01
952712
A controlled experimental program was conducted to determine the response of humans and a human surrogate with experimental lap belt restraints in -Gz acceleration environments. In the program, lap belt anchorage position (belt angle) and belt tension/slack were varied. Human volunteers were subjected to a static -1.0 Gz acceleration for each restraint configuration. A 95th percentile male Hybrid Ill dummy was subjected to a nominal 4.25 m/s (9.5 mph), -5 Gz impact while restrained by each restraint configuration. For the -Gz acceleration, significant changes in occupant head excursion were observed with varied lap belt configurations. In general, less pre-crash belt slack and higher lap belt angles produced significant reductions in occupant vertical excursions. This research provides data for use in evaluating or developing occupant survivability systems for rollover crash environments.
Technical Paper

The Motor Vehicle in the Post-Crash Environment, An Understanding of Ignition Properties of Spilled Fuels

1999-03-01
1999-01-0086
To date, the flammability of common automotive fluids under real-world conditions has not been well characterized for general use in the automotive community. This paper presents the results of a research program aimed at providing a greater understanding of the potential fire hazards of common fluids carried on board today's vehicles. A literature review was conducted to define the ignition properties of common automotive fluids as determined very precisely in the lab environment. A test program was then established to gain insight into the ignition properties of common automotive fluids under some real-world conditions. Automotive engine and exhaust components were used to create a test mechanism which realistically represented the environment, temperatures, and surfaces to which vehicle fluids may be subjected The reported laboratory results are compared to the test data. Tests were conducted on twelve fluids with and without ignition sources present.
X