Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Synchronous Belt Vibration in Automotive Valve Train

1998-01-29
880077
The synchronous belt employed in the valve train of automotive engines is operated under fluctuating load. Two types of the belt vibration are observed. One is the well-known lateral vibration. The other is the vibration in the belt running direction which may cause the resonant vibration of the camshaft rotation and may affect the belt life. The purpose of this paper is to describe an analysis of the latter vibration. This vibration was analyzed using the model composed of the inertia moment of the camshaft system and the nonlinear elasticity of the belt in the running direction. The predicted resonant frequency and amplitude were in good agreement with the measured ones. The influence of each factor of the model on the vibration was also investigated. The stiffness in the belt running direction that is determined by the tooth distortion When the belt engages with the pUlley should be increased to reduce the amplitudes of the resonant Vibration.
Technical Paper

Formulation Technology for Low Phosphorus Gasoline Engine Oils

1992-10-01
922301
The effect of phosphorus concentration in gasoline engine oils on the valve train wear was experimentally investigated by using the JASO M328-91 3A valve train wear (3A-VTW) test method. The phosphorus concentration is determined proportionally to the amount of zinc dithiophosphate (ZDDP), which is formulated as both antiwear agent and antioxidant. Lower concentrations of ZDDP generally bring about larger wear in the valve train. However, it was found from the experiments that valve train wear remained low despite a decrease of phosphorus concentration when secondary ZDDPs with short alkyl chain together with appropriate ashless dispersants were selected. Since adsorptivity of secondary ZDDPs with short alkyl chain lengths onto rubbing metal surfaces is higher than that of primary types, the secondary types give excellent antiwear characteristics.
X