Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Modeling and Experiments on Ignition of Fuel Sprays Considering the Interaction Between Fuel-Air Mixing and Chemical Reactions

2003-03-03
2003-01-1071
This study aimed to elucidate the ignition processes in transient fuel-sprays over a wide range of ambient conditions corresponding to PCCI combustion, as well as diesel combustion. Ignition of n-heptane sprays was experimentally investigated by using a constant-volume vessel. The well-known temperature dependencies of ignition delays were observed at a high ambient pressure. On the other hand, a negative temperature coefficient (NTC) accompanying a two-stage pressure rise was detected for lower ambient pressures. High-speed shadowgraph images indicated that the temperature rise begins in the highly homogenous mixture along the combustion chamber wall. Enhancement of fuel-air mixing with elevated injection pressure and a reduced nozzle orifice delays the appearance of hot flame in the NTC condition. To better understand these phenomena, ignition processes were predicted using an ignition model including a stochastic turbulent mixing model and a reduced chemical reaction scheme.
Technical Paper

Stochastic Model for Diesel Combustion Considering Some Turbulent Mixing Zones

1992-02-01
920693
A new model to describe diesel combustion process has been developed. In this model diesel combustion field is divided into two zones, premixing and combustion. Turbulent mixing process is described by the stochastic approach in each zone separately. Comparison of calculations with experimental results showed that this model can predict the entire course of heat release and nitrogen-oxide formation precisely, under wide-spread conditions. Two-dimensional flame temperature distributions in the combustion field by the two color method were compared with simulation results. Both the measured and the calculated flame temperature distributions showed good agreements with each other. In the diesel combustion process, the injected fuel mixes with air entrained inside the spray. The mixture is thus formed, and ignites at several points. Random expansion of flamelets accelerates both mixing and combustion. Following this, fairly moderate diffusion combustion proceeds.
Technical Paper

Ignition Characteristics of Hydrogen Jets in an Argon-Oxygen Atmosphere

2012-04-16
2012-01-1312
The ignition delay and combustion characteristics of hydrogen jets in an argon-oxygen atmosphere were investigated to provide fundamental data for operating an argon-circulated hydrogen internal combustion engine. Experiments were conducted in a constant-volume combustion vessel to study the effects of ambient temperature, ambient pressure, oxygen concentration and injection pressure on a pre-burning system. The hydrogen-jet penetration and flame were also investigated based on high-speed shadowgraph images. The experimental results indicated that the ignition delay (τ) increases as the ambient temperature (Ti) decreases, similar to the results obtained in an air atmosphere. The heat-release rate results also exhibited similar trends.
Technical Paper

Study on NOx Control in Direct-Injection PCCI Combustion - Fundamental Investigation Using a Constant-Volume Vessel

2006-04-03
2006-01-0919
The effects of fuel injection conditions (injection pressure, nozzle orifice diameter and fuel injection quantity) on NOx formation in direct-injection Premixed Charge Compression Ignition (DI-PCCI) combustion were investigated using a constant-volume vessel and a total gas-sampling device. The results show that promotion of fuel-air mixing reduces final NOx mass accompanying a delayed hot flame. In particular, under low oxygen mole fraction conditions, in addition to the hot flame delay, the promotion of fuel-air mixing results in a lower heat release rate. In this case, the final NOx mass is further reduced. For a fixed nozzle orifice diameter, the final NOx mass is reduced with increasing injection pressure. This effect is remarkable for smaller nozzle orifice diameters. Regardless of the oxygen mole fraction, under the low injection fuel quantity condition, enhancement of fuel-air mixing reduces the final NOx mass per released heat.
Technical Paper

Fundamental Investigation of NOx Formation in Diesel Combustion Under Supercharged and EGR Conditions

2005-04-11
2005-01-0364
Aim of this study is to clarify the NOx formation mechanism in diesel combustion under high-supercharged condition. Effects of ambient conditions and fuel injection parameters on diesel combustion were investigated using a constant volume chamber. NOx formation process was investigated using a total gas-sampling device. The results indicate that by using the above experimental setup it is possible to realize entirely diffusion combustion like what seen in the highly supercharged condition. Increasing ambient pressure up to 8MPa with high injection pressure shortens the ignition delay and offers a heat release rate proportional to the fuel injection rate with a short combustion duration. Increasing ambient pressure gives a higher NOx formation rate and final NOx concentration. This is due to enhancement in the fuel-air mixing which promotes the heat release.
Technical Paper

Novel Approaches to an Efficient Trap of Diesel Particulates and It's Regeneration

2000-06-19
2000-01-1930
To develop the reliable and practical method for efficiently collecting diesel particulates and for its regeneration, novel approach with a pellet-packed bed was proposed. This trap has the labyrinths of the flow passage which favors inertial impaction to ceramic pellets, ensuring the required trap efficiency with a longer lifetime prior to clogging as long as the appropriate pellet diameter and trap size are selected. From the experimental results on a single-cylinder test engine, it is shown that the pellet-packed bed has smaller pressure loss during engine operation compared to the monolith filter. Also, the regeneration test was made using a peculiar system by pellet circulation in place of conventional oxidation of particulates. Based on the results, the feasibility of the pellet-packed bed for diesel particulate trap was demonstrated.
X