Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling and Control of Regenerative Braking System in Heavy Duty Hybrid Electrical Vehicles

2008-06-23
2008-01-1569
We consider the modeling and control design of the regenerative braking system for heavy duty hybrid electric vehicles (HEVs) which have an isolated air-over-hydraulic (AOH) brake system and a generator. A nonlinear model is set up to characterize the behavior of the brake system. Then, the brake control is formulated as a torque tracking problem according to the driver's operations. The AOH brake system is appointed to track a constant brake torque; meanwhile, the generator is designed to track the torque error between the desired braking torque and the torque output of the AOH brake system. Finally, numerical experiments are carried out to verify the proposed model and control algorithms.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
X