Refine Your Search

Search Results

Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Technical Paper

Effect of Fuel Properties on Diesel PM Components

2007-07-23
2007-01-1941
In this study, compositions, size distributions and activation energy in oxidation of diesel PM were investigated. Benzene (C6H6) was mixed to diesel fuel as a promoter of PM formation, and further, ferrocene (Fe(C5H5)2) was added as a promoter for oxidation processes during in-cylinder combustion and after-treatment. The effect of those additions on the PM characteristics was discussed on the basis of measured results such as SOF and dry-soot ratio in PM, primary and aggregate particle size distributions of PM, activation energy of PM oxidation, and PM components with elemental analysis. As a result, it was shown that ferrocene had special effect on the PM size distribution and the activation energy.
Technical Paper

Nano-size PM Emission from Laminar Diffusion Flame of Diesel Fuel

2007-07-23
2007-01-1942
The formation mechanism of Particulate Matter (PM) in a flame and fuel effect on this mechanism, are still under unclear problems. In this study, a fundamental pool combustion flame of diesel fuel was formed and PM emission from the flame was analyzed. As a result, though emission of soot from the flame was not observed, significant number of nuclei mode PM was emitted. From a flame of incomplete combustion, aggregate mode particles increased and nuclei mode particles reduced drastically. When a little mount of lubricant oil was contaminated into diesel fuel, number concentration of nuclei mode particle increased.
Technical Paper

Diesel Spray and Adhering Fuel on an Impingement Wall

2002-05-06
2002-01-1628
Average concentration of a diesel impingement spray and characteristics of fuel adhering on a flat wall were investigated experimentally. Spray tip penetration and spray volume before and after impingement were measured on high speed photographs of the spray which was injected into a high pressure chamber of cold state. Further, the adhered fuel on the wall was directly measured by a precision balance. To clarify the characteristics of the impingement spray at various wall distances, pre-impingement spray and post-impingement spray were individually analyzed. Based on the entrainment air and fuel mass which was corrected by the adhered fuel, the air-fuel ratio was derived at various wall distances. As the results, the wall impingement of the diesel spray caused lean mixture spray concentration in comparison with the free spray. As the wall distance increased, the fuel film diameter to spray width ratio decreased.
Technical Paper

Spray-to-Spray Interactions after Wall Impingement

2003-05-19
2003-01-1835
In a direct injection diesel engine, liquid fuel was injected through a multi-hole injection nozzle to a combustion cavity. The spray impingement on the cavity wall made the quick mixing of sprayed fuel and air. Then the spray impingement process was considered as the key process of the mixture formation, and this process was widely investigated. Since the cavity had too small space for free movement of plural sprays injected by a multi-hole injection nozzle, sprays after impingement were interacted together on the cavity wall. This movement was generally recognized but the detail behavior was not yet clarified. In this study, single shot diesel spray injected into a high-pressure test vessel, in which the impingement plate was mounted, was used to investigate the above movement.
Technical Paper

Stereoscopic Observation on an Ignition Position of Diesel Spray

2003-05-19
2003-01-1787
In a direct injection diesel engine, fuel spray was auto-ignited by an elevated temperature and pressure atmosphere in a combustion chamber. Since an ignition might appear in which a suitable mixture for exothermic reaction was prepared and flame might be developing to a combustible mixture, a settlement of ignition in time and space could control the entire combustion. The ignition position was usually investigated with photometric observations such as high-speed video systems. However plane observations could not inform the exact position of the ignition because spray had the 3D structure. In this paper, a new trial for the measurement of the ignition position was reported. A single shot diesel spray injected into a test chamber was ignited by elevated temperature and pressure atmosphere in the chamber. The chamber had an impingement plate so as to measure an ignition delay of a wall impingement diesel spray.
Technical Paper

Ignition Delay of a Diesel Spray Injected into a Residual Gas Mixture

1991-09-01
911841
The purpose of this study was to investigate the effect of residual gas fraction and compositions on the ignition delay of a diesel spray. The air residual gas mixture was produced by injecting diesel sprays into a constant volume combustion bomb with no scavenging burned gas in it. The air initially contained in the bomb was enough to completely burn the fuel supplied by more than 20 injections. The spray injected in the bomb was ignited by the self-ignition process affected by the residual gas. Repetitions of the fuel injection raised the fraction of residual gas in the bomb. The ignition delay in each injection was measured by a photo-transistor. The ignition delay was a minimum when the ambient mixture contained about 4 % residual gas. The effect of residual gas compositions was investigated by adding small amount of CO, CO2 and THC into the bomb. The CO and CO2 compositions in the burned gas produced an elongation of the ignition delay, while the THC shortened the delay period.
Technical Paper

Characterization of PM sampled from inside and outside of diffusion flame

2011-08-30
2011-01-2099
Characteristics of PM and its compositions inside and outside of flame were required to develop reduction technologies for combustion origin PM. In this paper, relationship between PM size distribution and compositions such as soot and soluble organic fraction (SOF) of PM sampled with filter were investigated. Number distributions of PM (30 nm-10 μm) were measured using an ELPI (Electrical Low Pressure Impactor). Dry-soot and SOF in PM that was captured an individual stage of ELPI were analyzed using a combustion type PM analyzer (MEXA-1370PM). It was clarified that nuclei mode particle included more SOF than accumulation mode particle. PM characterization showed that there were many differences between in-flame PM and out-flame PM. In-flame PM contained much of low boiling point SOF and dry-soot composition was thermally unstable. Further, similarities between SOF in PM sampled with filter and gaseous hydrocarbons passing through PM filter were discussed.
Technical Paper

Measurement of Turbulent Flow in the Combustion Chamber of a D.I. Diesel Engine

1990-02-01
900061
This paper presents the experimental analysis for the turbulence in the combustion chamber of a direct injection (D.I.) diesel engine. A dual beam mode, forward-scattering laser doppler velocimeter was applied to the flow measurement in a four-stroke, single-cylinder direct injection diesel engine of 110 mm bore and 125 mm stroke. The turbulence component was separated from instantaneous velocity using a high-pass filter. As a result, the difference in turbulent intensity between the intake and compression processes was discussed. Also, the effect of intake port and piston cavity shapes, the compression ratio and the engine speed on the turbulent intensity were clarified. In addition, the empirical equation for the decay of turbulent intensity in the compression process was expressed by a function of the Reynolds number based on the mean swirling flow.
Technical Paper

Ignition and Flame Propagation of Spray Compound Mixture

1993-10-01
932711
The ignition and flame propagation processes of a propane-air mixture compounded with a kerosene spray were investigated in order to allow a better understanding of the multi-phase combustion process of the spray compound mixture in a direct injection stratified charge (DISC) engine. The ignition probability and the flame propagation velocity, as functions of the overall equivalence ratio, fraction of propane in the fuel, ignition energy and the Sauter mean diameter of the spray, were measured under atmospheric conditions. The development of the flame kernel and the propagating flame were observed by a high-speed video camera combined with a schlieren system. Adding small amounts of the kerosene spray to the lean propane-air mixture improved the ignition probability. However, the ignition probability depended strongly on the Sauter mean diameter and the ignition energy. Replacing the propane with the kerosene spray in a rich propane-air mixture increased the flame propagation velocity.
Technical Paper

Attitude Control of a Diesel Spray Under the Coanda Effect

1994-10-01
941923
In this paper, a new concept of an attitude control of a diesel spray was proposed. The Coanda effect known in the fields of the fluidics was applied to control a penetrating direction of a diesel spray injected into a combustion chamber of a D.I. diesel engine. In general, a jet moving along a wall was deviated by the Coanda effect. So if the shape of a cavity crown of the combustion chamber would be suitably designed and a diesel spray behavior would be similar to a gaseous jet, the spray might penetrate along the cavity wall. Furthermore, the switching effect of the penetrating direction might appear with a piston movement. To establish this method for an attitude control of a diesel spray, behavior of a diesel spray that was affected by a fixed interference plate located near the spray axis was experimentally investigated.
Technical Paper

New Concept for Six-Stroke Diesel Engine

1994-10-01
941922
In this report, a new six-stroke diesel engine is proposed and the thermodynamic performances of this engine are numerically and experimentally analyzed. Since the six-stroke diesel engine introduced here has two combustion processes in one cycle, it offers new methods of combustion control which can't be attained in an ordinary four-stroke diesel engine. In the analysis, we use a simple single zone thermodynamic model with considering the Wiebe's function for heat release rate and the Woschni's equation for heat transfer coefficient. As a results, it was confirmed when the heat release of 1st combustion stroke and 2nd combustion stroke were equivalent, the maximum in-cylinder gas temperature was the lowest, and further it was lower than that of the four stroke diesel engine.
Technical Paper

Visualization of Fuel-Air Mixing Processes in a Small D.I. Diesel Engine Using the Liquid injection Technique

1988-02-01
880296
Simplified visualization of the fuel spray developing process in a small D.I. diesel engine was made by the liquid injection technique. In this technique, a liquid fuel was injected into another liquid to simulate injection into a high pressure gaseous atmosphere. For obtaining spray characteristics in the liquid similar to a diesel spray in a high-pressure gaseous atmosphere, the similarity principles based on the Reynolds number of the fuel flow at a nozzle hole and empirical equations of the spray penetration including the breakup length were introduced in this study. Especially, the injector was newly designed for the liquid injection technique based on these similarity principles. The behavior of the spray in a swirling flow was investigated. The spray with different breakup length shows different behavior in the same swirling flow.
Technical Paper

Swirl Measurements and Modeling in Direct Injection Diesel Engines

1988-02-01
880385
A simple, but useful method is described for predicting the swirl speed during the compression process in a direct injection diesel engine. The method is based on the idea of dividing the combustion chamber into two volumetric regions and computing the variation of the angular momentum in each region. Laser doppler velocimeter measurements in a motored engine proved the validity of the idea that the volume in the combustion chamber should be treated as two regions, that is, the cylindrical volume inside the piston-cavity radius, and the annular volume outside the piston-cavity radius. Distributions of tangential velocities were measured for different conditions, including the intake port configuration, the piston cavity shape, the compression ratio and the engine speed. These results were integrated in the two regions and provided the measured “two volume-regions” swirl ratio. At the same time, the computation was carried out for the same experimental conditions.
Technical Paper

Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small D.I. Diesel Engine

1989-02-01
890463
The effects of engine parameters, such as spray characteristics and combustion chamber geometry on performance and exhaust emissions in a small D.I. diesel engine were investigated to find out the optimum way of improving the engine. Diesel spray injected into a high-pressure vessel was photographically analyzed to guess the spray behavior in a firing diesel engine. The ratio of hole length to the diameter of a nozzle (L/D) was varied from 3 to 7 as the main parameter of the nozzle. Piston cavity diameter and intake swirl were chosen as the other parameters. The effect of the above parameters was investigated in terms of brake specific fuel consumption (BSFC), exhaust smoke, nitric oxides (NOx) and total hydrocarbon (THC). The L/D of the nozzle is concluded to be of major importance in terms of BSFC and THC emission. Smaller piston cavity diameters lead to lower exhaust smoke, but to a higher level of NOx emission.
Technical Paper

Effects of Fumigated Fuel on the Ignition and Initial Combustion Stages in a D.I. Diesel Engine

1989-09-01
891880
Effects of fumigated fuel on the initial combustion stage of a diesel spray were studied by measuring an ignition delay period and rate of heat release, clarifying a self-ignition limit of a fumigated fuel. Combustion experiments on both fumigated diesel fuel and methanol in a direct injection diesel engine gave the following results; a rapid combustion occurs with the methanol fumigation, while, the diesel fuel fumigation slightly changes the combustion of the main spray of diesel fuel injected directly into the combustion chamber. Regarding the rate of heat release, the maximum rate in the initial combustion stage increases rapidly with an increase in methanol fumigation, while for the fumigated diesel fuel, the maximum rate changes only slightly. The ignition delay period affected by fumigated diesel fuel is shorter than that affected by methanol at the same fumigation equivalence ratio and intake temperature.
Technical Paper

A Visual Study of D.I. Diesel Combustion from the Under and Lateral Sides of an Engine

1986-09-01
861182
A high-speed photographic study is presented illustrating the influence of engine variables such as an introduced air swirl, the number of nozzle holes and the piston cavity diameter, on the combustion process in a small direct-injection (D.I.) diesel engine. The engine was modified for optical access from the under and lateral sides of the combustion chamber. This modification enabled a three-dimensional analysis of the flame motion in the engine. The swirling velocity of a flame in a combustion chamber was highest in the piston cavity, and outside the piston cavity it became lower at the piston top and at the cylinder head in that order. The swirl ratio of the flame inside the cavity radius attenuated gradually with piston descent and approached the swirl ratio outside the cavity radius, which remained approximately constant during the expansion stroke. Engine performance was improved by retarding the attenuation of the swirl motion inside the cavity radius.
Technical Paper

Time and Space Resolved Measurement of Air Motion in a Cylinder of Direct-Injection Diesel Engine

1986-09-01
861229
This paper describes information of the swirling flow in a direct-injection diesel engine which has over-head valves and a troidal cavity. The forward-scattering laser doppler velocimeter was used. The “SIDE VIEW” optical arrangement was adopted in the engine to measure the flow in the cylinder and in the cavity with little modification on the configuration of the combustion chamber. The properties of the swirling flow were discussed for three kinds of cylinder heads which produced different intake flows. As a result, the relationship between the mean velocity, the turbulence and the cycle-to-cycle variation was revealed. Further, the variation of the flow pattern and the swirl intensity was indicated as a function of the crank angle and the axial distance.
Technical Paper

A Six-Stroke DI Diesel Engine Under Dual Fuel Operation

1999-05-03
1999-01-1500
A six-stroke DI diesel engine proposed by the authors had second compression and combustion processes which were added on a conventional four-stroke diesel engine. This engine had the first and second power strokes before the exhaust stroke. Numerical predictions and experiments previously carried out had shown that this six-stroke diesel engine could reduce NO exhaust emission. Further, the ignition delay of the second combustion process could be shortened by a high temperature effect in the second compression stroke. This advantage of short ignition delay could be utilized for an ignition improvement of a fuel with low cetane number. In the engine system reported here, a conventional diesel fuel was supplied as the fuel of first combustion process, and in the second combustion process, methanol was supplied.
Technical Paper

Study on PM Formation Behavior in Laminar Diffusion Flames of Diesel Fuel with Fatty Acids

2015-09-01
2015-01-1931
In this study, formation behaviors of soot in laminar diffusion flames of diesel fuel with fatty acid or fatty acid methyl ester (FAME) were investigated. Oleic acid and oleic acid methyl ester were selected as fatty acid and fatty acid methyl ester. Combustion gas emitted from the laminar diffusion flame was sampled, and PM composition in the gas was analyzed. Laser induced incandescence (LII) and laser induced fluorescence (LIF) techniques were applied to measure soot and polycyclic aromatic hydrocarbon (PAH) distributions in the laminar diffusion flames. As the results, soot emission and soot incandescence distributions were decreased by the addition of fatty acid or fatty acid methyl ester. Moreover, PAH concentration in the closed flame became high by addition of fatty acid or fatty acid methyl ester.
X