Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Air-Fuel Ratio and Trapped Mass Estimation in Diesel Engines Using In-Cylinder Pressure

2017-03-28
2017-01-0593
The development of more affordable sensors together with the enhancement of computation features in current Engine Management Systems (EMS), makes the in-cylinder pressure sensing a suitable methodology for the on-board engine control and diagnosis. Since the 1960’s the in-cylinder pressure signal was employed to investigate the combustion process of the internal combustion engines for research purposes. Currently, the sensors cost reduction in addition to the need to comply with the strict emissions legislation has promoted a large-scale diffusion on production engines equipment. The in-cylinder pressure signal offers the opportunity to estimate with high dynamic response almost all the variables of interest for an effective engine combustion control even in case of non-conventional combustion processes (e.g. PCCI, HCCI, LTC).
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
Technical Paper

Prediction of the Spontaneous Ignition in a GCI Engine using an Extended Physical Model of the Ignition Delay

2023-09-29
2023-32-0019
With the aim to further reduce and limit pollutant emissions and fuel consumption towards carbon neutrality, researchers and automotive manufacturers have been studying new combustion technologies, such as low temperature combustions, which provide an efficient combustion with low pollutant emissions. Despite innovative combustion techniques, such as Homogeneous charge compression ignition (HCCI) and Gasoline compression ignition (GCI), proved to reduce pollutant emissions and increase efficiency of internal combustion engines, their large-scale deployment has been limited by problems in combustion management and stability. In fact, the challenge related to these innovative combustion techniques consists in the development of new control strategies and new calibration methodologies, which allow to limit their combustion instability.
X