Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

The Effect of Fuel Volatility on HCCI Using Simultaneous Formaldehyde and OH PLIF

2004-10-25
2004-01-2948
Simultaneous formaldehyde and OH PLIF have been applied in a direct-injected HCCI engine. The engine is a 0.5 l single-cylinder optical engine equipped with EGR system. PLIF measurements were performed with the engine run with two different fuels of low and high volatility, respectively. Different ratios of EGR were also examined. The aim of the study was to investigate how fuels with different volatility and EGR affect the HCCI combustion and measurements were performed for early and late injection timings. Measurements are presented for different injection timings showing formaldehyde and OH from start of injection until late in the expansion stroke. Also, formaldehyde distributions obtained from after the low temperature regime and before the high temperature regime are studied for different tuning of the start of injection from 300CAD to 20CAD before top dead center.
Technical Paper

Optical Diagnostics of HCCI and Low-Temperature Diesel Using Simultaneous 2-D PLIF of OH and Formaldehyde

2004-10-25
2004-01-2949
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The engine used for the measurements was a car Diesel engine converted to single-cylinder operation and modified for optical access. The fuel, n-heptane, was injected by a direct injection common rail system and the engine was also fitted with an EGR system. The engine was operated in both HCCI mode and Diesel mode. Due to the low load, the Diesel mode resulted in low-temperature Diesel combustion and because of limitations in maximum pressure and maximum rate of pressure increase of the optical engine, the Diesel mode was run at a higher EGR percentage than the HCCI mode to slow down the combustion. A third mode, pilot combustion, was also investigated. This pilot combustion is created by an injection at 30 CAD before TDC followed by a second injection just before TDC.
Technical Paper

Optical Diagnostics of HCCI and UNIBUS Using 2-D PLIF of OH and Formaldehyde

2005-04-11
2005-01-0175
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The measurements were performed in a light duty Diesel engine, using n-heptane as fuel, converted to single-cylinder operation and modified for optical access. It was also equipped with a direct injection common rail system as well as an EGR system. The engine was operated in both HCCI mode, using a single fuel injection, and UNIBUS (Uniform Bulky Combustion System) mode, using two injections of fuel with one of the injections at 50 CAD before TDC and the other one just before TDC. The OH and formaldehyde LIF images were compared with the heat-release calculated from the pressure-traces. Analyses of the emissions, for example NOx and HC, were also performed for the different operating conditions.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
X