Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train

2001-08-20
2001-01-2532
A general design methodology of the fuel cell powered hybrid vehicle drive train has been developed. With the methodology and a computer simulation program, all of the systematic parameters can be designed, such as, the rated power of the electric motor drive, fuel cell system, peaking power source as well as the energy capacity. An overall control strategy has also been developed. The main function of the control strategy is to properly control the power produced by the fuel cell system and the peaking power source, so as to meet the power demand, maintain the energy level of the peaking power source in its optimal region and operate the fuel cell system within its high efficiency region. In this paper, a design example has also been introduced in each section.
Technical Paper

Study of Hybrid Electric Vehicle Drive Train Dynamics Using Gyrator-Based Equivalent Circuit Modeling

2002-03-04
2002-01-1083
The main idea in the concept of advanced vehicles is to combine two or more power plants in order to improve the overall efficiency of the vehicle. The modeling of advanced vehicle is challenging, mainly because of the presence of several power plants in the system. After a presentation of the generalized equivalent circuit theory, including the electrical analogy and the theory of generalized gyrators and transformers, the modeling technique is compared to existing methods. Then, vehicle subsystems are modeled from the mechanical drive train to the different power plants and energy storages, according to the methodology. Some typical hybrid architectures are processed through the modeling technique and a final equivalent circuit is presented and discussed for each of them. Finally, the study of electromechanical interactions and mechanical transients is presented.
Technical Paper

Impact Study of Field-Weakening Operation of Electric Motors on Drive Train Oscillations

2002-03-04
2002-01-1089
Studying the dynamics of electric motor drives is not easy. Indeed, there is no unified approach to model both the mechanical and the electrical elements of the motor drive in order to bring an intuitive understanding of the dynamic behavior. Moreover, for traction purposes, the machines are often used at field-weakening operation, which can be a source of unwanted oscillations. In this paper, the gyrator-based equivalent circuit modeling is presented. The method allows the understanding of some aspects of the dynamic behavior of DC motor drives such as the interaction between electric inductances and the rotor inertia and their oscillating behavior.
Technical Paper

Topological Variations of the Inverse Dual Converter for High-Power DC-DC Distribution Systems

1992-08-03
929114
New dc to dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analysed and some simulation results have been presented. It has been shown in a recent publication [1] that the single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. Finally the IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.
X