Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

One Piece Barrel Fastening

2007-01-17
2007-01-3913
Kawasaki Heavy Industries (Nagoya, Japan) designs and builds the fuselage barrel section #43 of Boeing's 787 Dreamliner. The one-piece-barrel (OPB) fuselage design offered a new challenge to fastening equipment assembly cells. Using conventional methods, a fastening machine built around the roughly 6 meter diameter barrel would be very large, heavy, slow and inaccurate. The solution was to use Electroimpact's EMR technology on two smaller independent post machines with a reduced working envelope offering better speed, reliability and still maintaining the high accuracies required. Optimizing the working envelope and using EMR technology were pivotal factors in achieving the positioning accuracies required for a reliable fastening process that is maintainable in a production environment and increased access to fastener locations.
Technical Paper

Low Voltage Electromagnetic Lockbolt Installation

1992-10-01
922406
British Aerospace, Airbus Ltd., Chester, UK manufactures the main wing box assembly for all current Airbus programs. Titanium interference fasteners are used in large numbers throughout these aircraft structures. On the lower wing skin of the A320 alone there are approximately 11,000 of this fastener type. Currently, the majority of these fasteners are manually installed using pneumatic or hydraulic tooling. British Aerospace engineers recognized the significant potential which automation offers to reduce these current labor intensive installation methods. Electroimpact proposed extending Low Voltage Electromagnetic Riveter (LVER) technology to the automatic installation of these interference fasteners as well as rivets. Close liaison between Airbus and Electroimpact engineers resulted in the development of an automated LVER based lockbolt installation system, which is currently undergoing evaluation.
Journal Article

AFP Processing of Dry Fiber Carbon Materials (DFP) for Improved Rates and Reliability

2020-03-10
2020-01-0030
Automated fiber placement of pre-impregnated (pre-preg), thermoset carbon materials has been industrialized for decades whereas dry-fiber carbon materials have only been produced at relatively low rates or volumes for large aerospace structures. This paper explores the differences found when processing dry-fiber, thermoset, carbon materials (DFP) as compared to processing pre-preg, thermoset materials with Automated Fiber Placement (AFP) equipment at high rates. Changes to the equipment are required when converting from pre-preg to dry fiber material processing. Specifically, the heating systems, head controls, and tow tension control all must be enhanced when transitioning to DFP processes. Although these new enhancements also require changes in safety measures, the changes are relatively small for high performance systems. Processing dry fiber material requires a higher level of heating, tension control and added safety measures.
X