Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Electronic Fuel Injection for Hydrogen Fueled Internal Combustion Engines

1998-08-11
981924
This paper describes an evaluation of a series of commercially available natural gas fuel injectors, originally designed for heavy-duty diesel application, for use with hydrogen fuel in an electronic fuel-injected internal combustion engine. Results show that sonic flow, pulse-width-modulated electronic gaseous fuel injectors provide accurate and stable metering of hydrogen gas at fuel pressures between 25 and 200 psig. A linear flow rate of hydrogen was observed with a low standard deviation error during pulse width modulation. Plots of flow rate of hydrogen (mg/injection) versus pulse width (PW) are presented for inlet pressures from 25 to 200 psig for selected injectors. In addition, injector response tests were conducted and found to have time delays (time it takes the injector to open) between 2.6 ms and 2.3 ms at 25 psig inlet pressure. Time-delay times increased linearly between 4.0 ms and 3.0 ms at 200 psig.
Technical Paper

Turbocharged Hydrogen Fueled Vehicle Using Constant Volume Injection (CVI)

1998-08-11
981922
A University of California, Riverside (UCR) 1992 Ford Ranger truck was converted to operate on hydrogen which is produced from water electrolysis at the UCR College of Engineering-Center for Environmental Research and Technology (CE-CERT) Solar Hydrogen Research Facility (SHRF). The Ford Ranger's 2.3L engine was modified to operate as a lean-burn, hydrogen fuel internal combustion (IC) engine, using a Constant Volume Injection (CVI) system with closed-loop control and exhaust oxygen feedback. The vehicle had excellent starting, idle, and shut-down operation; a range in excess of 161km (100 miles); and initially operated with virtually no preignition problems typical of hydrogen fuel engines. At speeds above 64 km/ h (40 mph), the vehicle exhibited performance characteristics similar to comparable gasoline-powered vehicles, although further improvements are needed at lower speeds.
X