Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experiments in Active Diesel Particulate Filter Regeneration

2003-11-10
2003-01-3360
Diesel particulate filters (DPFs) are a technology likely to be deployed to meet future stringent emission levels for heavy and light duty diesel powertrains in North America and Europe. This paper discusses experimental results in the active regeneration of DPFs. Attention is given to the system components, the information based on which regeneration is triggered, and the means to achieve a regeneration. The paper will report on successful regenerations under several extreme conditions.
Technical Paper

Control of Oxygen for Thermal Management of Diesel Particulate Filters

2002-03-04
2002-01-0427
A control strategy is presented to limit the rate of heat release by Diesel Particulate Filters (DPF) during regeneration reactions between oxygen and the collected soot. Heat release is managed by limiting the oxygen supplied to the DPF, which limits the rate of the regeneration reaction. Three actuators are used to control the amount of oxygen flowing in the exhaust system: an exhaust gas re-circulation (EGR) valve, an intake throttle (ITH), and a hydrocarbon injector located upstream of the DPF in the exhaust system. The EGR valve and ITH are low-bandwidth actuators that control slowly varying changes in oxygen flow, while the hydrocarbon injector is a high-bandwidth actuator that controls the corresponding fast changes in oxygen flow.
Journal Article

Smart DPF Regenerations - A Case Study of a Connected Powertrain Function

2019-04-02
2019-01-0316
The availability of connectivity and autonomy enabled resources, within the automotive sector, has primarily been considered for driver assist technologies and for extending the levels of vehicle autonomy. It is not a stretch to imagine that the additional information, available from connectivity and autonomy, may also be useful in further improving powertrain functions. Critical powertrain subsystems that must operate with limited or uncertain knowledge of their environment stand to benefit from such new information sources. Unfortunately, the adoption of this new information resource has been slow within the powertrain community and has typically been limited to the obvious problem choices such as battery charge management for electric vehicles and efforts related to fuel economy benefits from adaptive/coordinated cruise control. In this paper we discuss the application of connectivity resources in the management of an aftertreatment sub-system, the Diesel Particulate Filter (DPF).
Journal Article

Uncertainty Analysis of Model Based Diesel Particulate Filter Diagnostics

2008-10-07
2008-01-2648
This paper analyzes the potential benefit of a model based DPF leakage monitor over a conventional DPF leakage monitor that checks pressure drop after a complete regeneration. We analyze the most important noise factors involved in both approaches and demonstrate that the model based leakage monitor does not improve on the conventional leakage monitor in accuracy. It does improve on completion frequency, but at the expense of a great modeling effort.
X