Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Swirl Rate on Mixture Formation in a Spark Ignition Engine Based on Laser 2-D Visualization Techniques

1993-11-01
931905
The mixture distribution and in-cylinder flow field inside the combustion chamber of a spark ignition engine with a swirl control intake system were measured by a pair of laser two-dimensional visualization techniques. The planer-laser-induced exciplex fluorescence technique was used to visualize the in-cylinder mixture formation by obtaining spectrally separated fluorescence images of liquid and vapor phase fuel distributions. The particle image velocimetry (PIV) was used to obtain the images of in-cylinder flow field. Experiments were carried out under various swirling conditions (from high [Rs=3.8] to low [Rs=0.4] swirl rates) to clarify the effect of swirl rate on mixture formation during the intake and compression strokes. Under the high swirling condition, fuel vapor was spread and rotated along the cylinder wall by the swirling flow during the compression stroke.
Technical Paper

In-Cylinder Fuel Distribution, Flow Field, and Combustion Characteristics of a Mixture Injected SI Engine

1995-02-01
950104
In order to control the mixture formation, a mixture injected 4-valve SI engine was developed with a small mixture chamber and mechanically driven mixture injection valve installed into the cylinder head. The mixture injection valve was located at the center of the combustion chamber. The mixture was injected from the final stage of the intake stroke to the beginning of the compression stroke. The mixture distribution and in-cylinder flow field inside the combustion chamber were measured by a pair of laser two-dimensional visualization techniques. A planar-laser-induced exciplex fluorescence technique was used to visualize the in-cylinder mixture formation by obtaining spectrally separated fluorescence images of liquid and vapor phase fuel distribution. Particle image velocimetry (PIV) was used to obtain flow field images. In the case of the mixture injected SI engine, the mixture injected into the swirl center was retained during the compression stroke.
X