Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Vehicle Exhaust Y-Pipe on Tailpipe Noise

2003-05-05
2003-01-1657
This paper analyzes the relation between sound pressure at tailpipe and exhaust Y-pipe structure. The length of Y-pipe influences sound order distribution that influences customers' responsiveness of sound. The equal Y-pipe remains the firing order and its harmonic contents while suppressing the half order and other whole order sounds. Various lengths of equal Y-pipe also influence the magnitude and frequency distribution of tailpipe noise. An air-to-air (induction-engine-exhaust) CAE model is built to predict tailpipe noise using up-to-date software. The real air-to-air model simulation shows that the 3rd and 6th orders are the dominating contents for equal Y-pipe exhaust system in 6-cylinder engine applications. The sound pressure of the half order contents increases with the length difference between two branches of a Y-pipe. The results are useful for exhaust Y-pipe design.
Technical Paper

Exhaust System Robustness Analysis Due to Flex Decoupler Stiffness Variation

2003-05-05
2003-01-1649
The function of flex decoupler is to reduce the vibration transferred from the engine to the vehicle body. The stiffness of the flex decoupler is a key parameter in the vibration control. This paper deals with decoupling exhaust hot end and cold end to minimize vibration transfer. A computer aided engineering (CAE) based design of experiment (DOE) is used to investigate the coupling stiffness. A finite element model is built to analyze the exhaust vibration responses. Robustness of the exhaust system is analyzed. The analysis reveals that vertical stiffness of the flex decoupler is the key parameter for the hanger force response. The main control factors for exhaust vertical and lateral bending frequencies are vertical and lateral stiffnesses of the decoupler, respectively.
X