Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Novel Steering Scenarios for an 8X8 Scaled Electric Combat Vehicle

2023-04-11
2023-01-0106
This work investigates the steering and wheel speed control of a completely custom built 8x8 scaled electric combat vehicle (SECV) which has been constructed to meet the Ackermann condition at low speeds. During remote control operation the scaled vehicle is capable of continuously maintaining and varying the individual wheel speed and individual wheel steering angles of all eight wheels in real time. Several steering scenarios have been developed including traditional (front 2-axle steering), fixed third axle (first, second and fourth axle steering), all wheel steering and crab steering (all wheels are parallel with same steering angle). The traditional, two axle steering scenario is experimentally tested for accuracy in this work with planned future research for experimental analysis of the other steering configurations. This work is conducted using Arduino software to control the physical SECV and TruckSim software to simulate the dynamics of the vehicle.
Technical Paper

Direct Yaw Control Based on Optimal Longitudinal Tire Forces for 8×8 Combat Vehicle

2021-04-06
2021-01-0261
This paper proposes an active chassis control strategy for an Eight-wheel drive/Four-wheel steering (8WD/4WS) combat vehicle, where only the first and second axles’ wheels are steerable, while the third and fourth axles’ wheels are non-steerable. Utilizing torque vectoring and differential braking control to improve its lateral dynamics at limit handling. Due to the non-linear characteristics of the tires and its friction limit, the vehicle may exhibit instable behavior during cornering maneuvers. It is well known that the tire longitudinal and lateral forces are shared, if longitudinal forces increased, slip ratio will increase and causing reduction in lateral forces that may cause the vehicle to drift out or spinning. Accordingly, the tires forces need to be optimally distributed based on vertical loads for each tire to prevent it from reaching the friction limit based on Friction Ellipse Theorem.
X