Refine Your Search

Search Results

Technical Paper

Direct Yaw Control Based on Optimal Longitudinal Tire Forces for 8×8 Combat Vehicle

2021-04-06
2021-01-0261
This paper proposes an active chassis control strategy for an Eight-wheel drive/Four-wheel steering (8WD/4WS) combat vehicle, where only the first and second axles’ wheels are steerable, while the third and fourth axles’ wheels are non-steerable. Utilizing torque vectoring and differential braking control to improve its lateral dynamics at limit handling. Due to the non-linear characteristics of the tires and its friction limit, the vehicle may exhibit instable behavior during cornering maneuvers. It is well known that the tire longitudinal and lateral forces are shared, if longitudinal forces increased, slip ratio will increase and causing reduction in lateral forces that may cause the vehicle to drift out or spinning. Accordingly, the tires forces need to be optimally distributed based on vertical loads for each tire to prevent it from reaching the friction limit based on Friction Ellipse Theorem.
X