Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design and Development of 3- Cylinder: 75 kW/liter, High Power Density Diesel Engine for Passenger Car Application to Meet Euro IV/V Emission Norms

2011-01-19
2011-26-0033
To meet the latest trends in internal combustion engines pertaining efficiency, emissions and durability, downsizing of the engine has become the key focus area. This paper describes about a robust, reliable and an integrated approach used in design and development of state of art high power density/ high speed engine developed from the concept, which can be adopted for passenger car and LCV application. A three-cylinder, 1.5 liter displacement diesel engine, fully balanced is being designed with an objective to produce 115kW @ 4200 rpm, delivering a specific power output over 75 kW/liter, which is at par with a contemporary class of specification in it. In the first stage, a derated version of 75 kW (50 kW/liter) with Euro-IV and Euro-V specifications is targeted aiming at smaller car and light motor vehicle segment and a prime-mover for hybrid application.
Technical Paper

Simplified Combustion Pressure and NOx Prediction Model for DI Diesel Engine

2013-01-09
2013-26-0131
This paper is focused on the prediction of in-cylinder pressure, temperatures and engine-out NOx. One of the important factors influencing engine output parameters is the rate of heat release, which affects the in-cylinder pressure, temperature and engine out emissions. A single-zone model is formulated for prediction of heat release and in-cylinder pressure. Being a predictive model, this model does not required cylinder pressure as an input. Combustion pressure is predicted by modeling compression pressure, ignition delay, heat release, and heat loss. Required Sub-models have been obtained from the literatures. Fuel burning rate is predicted using Watson model. To retain the computational efficiency and better prediction accuracy a two-zone model has been formulated to predict NOx emissions. Flame temperatures are predicted by enthalpy balance. Thermal NO concentration is predicted by using basic Zeldovich mechanism.
X