Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

Rationale and Selection of a Distillation Subsystem for Water Reclamation from Urine

1998-07-13
981714
A selection of a distillation subsystem with a rotary multistage vacuum distiller (RMVD) and a heat pump (HP) for the system for water reclamation from urine for the international space station is substantiated. The results of computational/experimental analysis of specific energy for distillation with RMVD and HP of different type used are presented. The test results of an experimental system mockup are given. It is shown that the subsystem of a given type is stable in operation, features high condensate processing rate and low specific energy demand.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Development and Testing of a Vacuum Distillation Subsystem for Water Reclamation from Urine

1999-07-12
1999-01-1993
This paper reviews the development and testing of the distillation subsystem of water regeneration system from urine (WRS-UM) based on a method of vacuum distillation with a rotary multistage vacuum distiller and a thermal pump. Test results show that with relatively small power consumption the subsystem using rotary three-stage vacuum distiller provides high rates of heat and mass transfer processes, useful productivity and distillate quality. The conducted tests have confirmed that it will be efficient to use the presented system as a part of WRS-UM system in Russian segment of the International Space Station.
X