Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Understanding the CCVS Stratified EGR Combustion System

1996-02-01
960837
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a port injected four-valve gasoline engine. This system, known as Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at a stoichiometric air/fuel ratio. Both burnrate (10-90% burn angle) and HC emissions are almost completely insensitive to EGR up to best economy EGR rate. Cycle to cycle combustion variation is also excellent with a coefficient of variation of IMEP of less than 2% at best economy EGR rate. This paper describes a research programme aimed at gaining a better understanding of the in-cylinder processes in this combustion system.
Technical Paper

Simulation and Development Experience of a Stratified Charge Gasoline Direct Injection Engine

1996-10-01
962014
Computational Fluid Dynamics (CFD) simulation has been used to investigate the fuel air mixing regimes of an open chamber gasoline direct injection (GDI) engine. Acceptable homogeneous stoichiometric charge operation was predicted by the CFD simulation and confirmed by data from engine experiments with early injection timing. The simulation also predicted that late injection timing would be inoperable with the open chamber geometry employed. This was confirmed by injection timing experiments on the test engine. Subsequent initial engine development using a different engine geometry with top-entry inlet ports and a piston containing a spherical bowl has demonstrated very stable combustion with an unthrottled late injection strategy. The use of recycled exhaust gas (EGR) is demonstrated to produce better emissions and fuel consumption than purely lean operation. The effect of throttling is found to provide emissions improvements at the expense of fuel economy.
X