Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Expansion of Premixed Compression Ignition Combustion Region by Supercharging Operation and Lower Compression Ratio Piston

2007-08-05
2007-01-3614
Various premixed diesel combustion concepts are suggested as the way of simultaneous reduction of NOx and PM emission from diesel engines. However, every combustion concept has common problems, such as difficulty of ignition timing control, a great deal of HC and CO emissions and limiting the operation region to low load operation. The purpose of this study is to expand the operation region of Premixed Compression Ignition (PCI) combustion, which is a premixed diesel combustion concept that realizes the fuel injection around the top dead center. As a result of examining it with EGR, supercharging operation and low compression ratio piston, PCI combustion region was expanded to cover higher load operation. And the high load region was limited by not only stoichiometric air fuel ratio but also permissible maximum in-cylinder pressure.
Technical Paper

Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center

2003-03-03
2003-01-0742
Premixed diesel combustion was performed and various characteristics examined with fuel injection timing near top dead center (TDC). A lean and uniform fuel-air mixture was found to during 25° C.A. with a narrow injection angle (27.5° with respect to horizontal), shallow dish combustion chamber, and low cetane number fuel (CN=19). These conditions enabled low NOx combustion in no exhaust gas re-circulation (EGR), despite fuel injection timing around 25° BTDC. Furthermore, HC emissions were lower than with premixed diesel combustion of the early injection type. Because fuel injection timing was near TDC, the volume of the mixture dispersed to a squish area was decreased. This combustion mode was also achieved with a high-cetane fuel (conventional diesel fuel) and high EGR rate conditions. However, in this case, it was difficult to adjust the ignition timing near top dead center. This combustion system also showed good performance in conventional diesel combustion mode.
Technical Paper

The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine

1998-02-23
980533
Previous research in our laboratory has shown that NOx emissions can be sharply reduced by PREDIC (PRE-mixed lean DIesel Combustion), in which fuel is injected very early in the compression process. However some problems still remain, such as higher fuel consumption, a lack of ignition timing control, and a large increase in THC and CO, compared to conventional diesel combustion. Appropriate mixture formation is necessary to solve these problems. In this paper, the influence of mixture formation on PREDIC was investigated. It was found that the pintle type injection nozzle was shown to be suitable for PREDIC, because it produced a comparatively uniform mixture in the combustion chamber and avoided collision of the fuel spray with the cylinder liner. Modeling by the KIVA-II software package was carried out to improve our understanding of the mixture formation process.
Technical Paper

Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine

1997-02-24
970898
Typical DI diesel engines operate with fuel injection taking place within a range of about 30 crank angle degrees before top dead center, at the end of the compression stroke. When injection takes place far earlier, at the beginning of the compression stroke, another form of combustion occurs, which we termed PREmixed lean Diesel Combustion, or PREDIC. With PREDIC operation, self-ignition occurs near top dead center and NOx emissions are drastically lower. When ignition occurs, the fuel-air mixture is thought to be nearly homogeneous, with only slight heterogeneity. Appropriate fuel spray formation is very important for successful PREDIC operation. Using a single-zone NOx formation model, calculations showed that the mean excess air ratio in the PREDIC combustion zone was 1.87, which resulted in very low (20 ppm) NOx emissions. Conventional combustion at the same conditions resulted in a mean combustion zone excess air ratio of 0.88.
Technical Paper

An Experimental Study of Premixed Lean Diesel Combustion

1999-03-01
1999-01-0181
Low NOx combustion is possible by PREDIC (PREmixed lean DIesel Combustion) in which fuel is injected at a very early stage of the compression stroke and the combustion starts at near the top dead center by self-ignition. To simplify the phenomenon of the PREDIC process, the test engine was operated with gaseous fuels added to intake air to realize combustion of a perfectly homogeneous mixture. The rich limit was observed around λ=2.0∼2.4. This limit was determined by considering the increase in NOx, and the steep pressure rise. During high load operations is not only the ignition timing but also the combustion rate should be controlled. By comparing the homogeneous charge and direct injection case, the mixture heterogeneity could be found to have an influence on the ignition timing and combustion rate, the engine speed and injection timing also had an influenced on these.
X