Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Performance Analysis and Economic Feasibility of Fuel Cell Vehicles: A Perspective Review

2020-09-15
2020-01-2256
Automotive industries have been a significant contributor to global warming over the last 30 years. Due to the excessive increase in environmental degradation, research has been conducted extensively in various fields to explore sustainable alternatives to IC engines. Therefore, heavy emphasis is being laid on Battery-run Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs). BEVs are facing their own set of challenges when it comes to production, recharge time, battery capacity and net carbon footprint, among other issues. However, FCEVs offer certain new opportunities for the automobile sector to foray into a sustainable space. This study aims to review the performance of fuel cell vehicles against the parameters of economic feasibility, technological feasibility, energy efficiency. Recent developments in fuel cell research have been discussed.
Technical Paper

Transient Analysis of Natural Convection around a Pair of Circular Cylinders inside a Square Enclosure

2018-04-03
2018-01-0776
Heat exchangers are widely used in various transportation, industrial, or domestic applications such as thermal power plants, means of heating, transporting and air conditioning systems, electronic equipment and space vehicles. In all these applications improvements in the efficiency of the heat exchangers can lead to substantial cost, space and material savings. Hence considerable research work has been done in the past to seek effective ways to improve the efficiency of heat exchangers. In this paper the effect of natural convection is justified between exterior solid wall surfaces and the surrounding air inside the enclosure. Designing of electronic devices, heavy industrial equipments such as boilers, turbines etc. and building aerodynamics are some of the real world application associated with this study.
Technical Paper

Study on Fluidic Thrust Vectoring Techniques for Application in V/STOL Aircrafts

2015-09-15
2015-01-2423
The art and science of thrust vectoring technology has seen a gradual shift towards fluidic thrust vectoring techniques owing to the potential they have to greatly influence the aircraft propulsion systems. The prime motive of developing a fluidic thrust vectoring system has been to reduce the weight of the mechanical thrust vectoring system and to further simplify the configuration. Aircrafts using vectored thrust rely to a lesser extent on aerodynamic control surfaces such as ailerons or elevator to perform various maneuvers and turns than conventional-engine aircrafts and thus have a greater advantage in combat situations. Fluidic thrust vectoring systems manipulate the primary exhaust flow with a secondary air stream which is typically bled from the engine compressor or fan. This causes the compressor operating curve to shift from the optimum condition, allowing the optimization of engine performance. These systems make both pitch and yaw vectoring possible.
Technical Paper

Development of an Advanced Compressed Air Engine Kit for Small Engine

2014-04-01
2014-01-1666
The transportation sector faces great and urgent challenges, including climate impacts of greenhouse gas emissions, local health impacts of criteria pollutants, and political & economic impacts of petroleum dependence. While several revolutionary solutions are being developed to reduce the impact of motor vehicles, such as increased fuel economy standards and accelerated adoption of hybrid vehicles, revolutionary new approaches must also be evaluated. One such opportunity is found in Compressed Air Engine (CA Engine), which is powered solely by compressed air stored in a vehicle on-board pressurized tank. Proponents of this technology claim CA Engines are greener and cheaper to operate, since they do not consume fossil fuels and produce zero tail-pipe emissions, while offering the power and performance needed for light-duty vehicle use.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
X