Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Development of Antilock Braking System (ABS) Controller Using Model Based Development (MBD) from Concept to Vehicle Trials

2013-01-09
2013-26-0084
The electronic content in an automobile is ever increasing for last several years due to emissions, safety and performance requirements. The complete development cycle of an electronic controller needs to be compressed to introduce new vehicle models in the market ahead of time. Antilock Braking System (ABS) ECU is one such example which has become a standard feature for most of the vehicles due to safety considerations. A project was undertaken to develop ABS ECU strategy from concept to vehicle trials with Model Based Development (MBD) technique. A methodology is established for scalable, fault tolerant, proven, and quick to implement ECU strategy development. This paper presents the development cycle followed for a unique ABS controller.
Technical Paper

Scope of Regenerative (Magnetic) Braking in the Production of Electricity in Automobiles

2013-10-14
2013-01-2543
It is of common knowledge that tapping all the feasible sources of energy and systems which prevent losses is the need of the hour. Currently, many such systems have been developed including “REGENERATIVE BRAKING”. The usual method for regenerative braking includes using a dynamo attached to the crankshaft which gets charged when the wheel rotates during idling. However, this study aims at doing this differently by attaching the regenerative system at the wheels. Considering an example of wastage of energy, a 1000 kg car brakes from 36km/h (10m/s) to 18km/h (5m/s) about 150 times in a liter consumption of diesel. We can safely calculate wastage of 5625 KJ of kinetic energy. This paper aims to explore this immense potential source of energy recovery by producing & storing electricity using magnetic braking on wheels of automobiles.
Technical Paper

Some Experimental Studies on the Use of Tyre Pyrolysis Oil (TPO) in an Agricultural Diesel Engine

2019-04-02
2019-01-0796
Globally, the demand for energy is increasing due to both increase in population and enhancement in the lifestyle of people. Most of the energy demand at present is met from fossil fuels, which are not only exhaustible but also a threat to the environment. Various routes of sustainable energy resources are being explored to address the above-mentioned issues and fuel made from used tyre may be one of the promising options. India is one of the fastest growing economies and every year 10 million new vehicles are registered. Due to poor road conditions, nearly fourfold tyres of this number are dumped as waste. This large stock of dumped tyres are non-biodegradable and creates other problems like a breeding site for mosquitos, or source of pollution in case of accidental fire. In order to cope with the large pile-up of used tyres, pyrolysis of these tyres could be a sustainable route.
Technical Paper

Optimization Techniques to Improve the Efficiency of Regenerative (Magnetic) Braking Systems

2015-04-14
2015-01-1210
At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
X