Refine Your Search

Search Results

Journal Article

Synthesis of Linseed oil Biodiesel using a Non-Catalytic Supercritical Transesterification Process

2014-04-01
2014-01-1955
Due to high energy demand and limited availability of fossil fuels, the energy necessity becomes a point of apprehension as it results in hike of fuel prices. It is essential to develop renewable energy resources while considering the impact on environment. In the last decade, demand of alternative fuels has increased a lot. Therefore, researchers have already started working on the aim of developing a green fuel to overcome the future energy demand. And as we know that the biodiesel is generally prepared from the non-edible and renewable resources thus, it can be among the competitive alternative future fuels. Besides that, it does not require any prior engine modifications for its usual advantage among other alternative fuels while using it within certain boundaries. However, the process biodiesel production is in itself time consuming which increases the cost of production while decreasing the yield.
Technical Paper

FUELLING A AGRICULTURE DIESEL ENGINE WITH DERIVATIVE OF PALM OIL

2004-01-16
2004-28-0039
As neat crude palm oil is not ideally suitable as a fuel for diesel engines because of its high viscosity; process of transesterification was adopted to develop methyl ester of palm oil that approximate the properties and performance of hydrocarbon-based diesel fuel. Various properties of the methyl ester of palm oil were evaluated and compared in relation with that of neat diesel. The prepared methyl ester of palm oil, blended in different concentrations with neat diesel was then subjected to performance and emission tests in order to evaluate its suitability in diesel engine. The data thus generated were compared with base line data generated from neat diesel. An optimal blend of 10-20% methyl ester of palm oil with neat diesel exhibited best performance and smooth engine operation without any symptoms of undesired combustion phenomenon. This suggests use of 10-20% of biodiesel developed from palm oil in diesel engine with out any difficulty.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

2016-10-17
2016-01-2265
The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
Technical Paper

An Experimental Analysis of Biodiesel Production from Mixture of Neem (Azadirachta indica) Oil and Sesame (Sesamum indicum L.) Oil and its Performance and Emission Testing on a Diesel Engine

2016-04-05
2016-01-1264
Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
Technical Paper

Some Experimental Studies on Use of Biodiesel as an Extender in SI Engine

2016-04-05
2016-01-1269
The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
Technical Paper

Evaluation of Performance and Emission Characteristic of Karanja Biodiesel and Diesel Blend in a Medium Capacity C.I. Engine Employing EGR

2011-08-30
2011-01-1936
Depleting fossil energy reserves and large scale debasement of the environment has been grabbing headlines for some time now. Biodiesel has been proven by researchers to produce less CO, HC and PM, albeit higher NOx as compared to diesel. The present study was carried out with blends of Karanja - a type of Leguminosae plant abundant in India - that produces non-edible seed oil analogous to Jatropha. An exhaust gas recirculation (EGR) system was employed to encumber the higher NOx emissions produced with biodiesel. Performance and emission characteristics of Karanja biodiesel blend (KB20) with EGR rates of 0, 5, 10, 15 & 20% were compared with baseline data of diesel. The results show that adaptation of EGR with KB20 reduces NOx emissions without any penalty on smoke opacity or BSEC.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel in a Compression Ignition Engine

2013-10-14
2013-01-2666
The commercial sources of energy such as fossil fuels and petroleum products are extensively used. These sources are finite and cause large scale degradation of environment. The increased pollution in urban areas is already causing serious sociological, ecological and economic implications. Diesel engines produce high torque at low rpm as compared to spark ignition engines due to which they are used in industrial, agricultural and transportation sector. Diesel fuel has higher HC, CO and PM emissions in comparison to biodiesel. This has drawn the attention of world towards the usage of biodiesel as an alternative fuel. Biodiesel has an advantage over diesel fuel because of its biodegradable and less toxic nature and superior lubrication properties. However, NOx emissions are compounded in case of biodiesel in CI engine. There has been concerns that biodiesel feedstock may compete with food supply in the long term.
Technical Paper

Experimental Investigation of Orange Peel Oil Methyl Ester on Single Cylinder Diesel Engine

2013-09-08
2013-24-0171
The rising cost and exponential depletion of crude oil in international market has provided an opportunity for the researchers to evaluate the utilization and suitability of various renewable fuels. Amongst variety of alternative fuels, biofuels have the potential to mitigate the vulnerability and the adverse effects of use of fossil fuels. Vegetable/plant oil is better proposition as alternative fuel for diesel engine having much advantage over other alternative fuels. Orange oil from its peel has a huge potential and can be used as an alternate fuel at the most economical purchase rate. In the present investigation experiments were carried out to evaluate performance and emission characteristics of Orange peel oil methyl ester blends (OPOME) (10%, and 20% by volume) on unmodified diesel engine. The properties of these blends were found to be comparable to diesel and confirming to both the American and European standards.
Technical Paper

Performance and Emission Characteristics of Fish Oil Biodiesel and Diesel Blend in a Medium Capacity C.I. Engine Employing EGR

2013-04-08
2013-01-1040
Ever increasing consumption of fossil fuel and large scale deterioration of environment are mandating employment of renewable fuels. Researchers all over the world are experimenting on variety of alternative fuels for meeting future energy demands. Biodiesel is one of the most promising alternative fuels due to lower CO, HC and PM emissions. However, NOx emissions are increased in case of biodiesel in CI engine. The present study focuses on evaluation of performance and emission characteristics of a medium capacity diesel engine on blends of fish oil biodiesel and diesel blends employing EGR. Fish oil was transesterified with methyl alcohol to produce methyl ester. B20 blend of biodiesel was used since it balances the property differences with conventional diesel, e.g., performance, emission benefits and cost. Further, B20 blend can be used in automotive engines with no major modification. NOx formation takes place when combustion temperature is more than 2000K.
Technical Paper

An Experimental Investigation on Performance and Emission Studies of a Single Cylinder Diesel Engine Fuelled with Blends of Diesel and Mahua Oil Methyl Ester

2013-04-08
2013-01-1041
Ever increasing consumption of petroleum derived fuels has been a matter of grave concern due to rapidly depleting global reserves and alarming levels of emissions leading to global warming and climate change. Exhaustive research has been carried out globally to evaluate the suitability of variety of renewable fuels for internal combustion engine applications. Amongst them, vegetable oil methyl esters or biodiesel seem to be a promising alternative for diesel in vital sectors such as transportation, industrial and rural agriculture. For quite some time, the focus for production of biodiesel has shifted towards non-edible oil feedstock from the edible ones, mostly due to food security issues. One such non-edible oil, locally known as Mahua in Indian subcontinent, is a very promising feed stock for biodiesel production. In the present investigation, 5%, 10%, 15% and 20% (v/v %) blends of mahua oil methyl ester (MOME) and diesel were prepared.
Technical Paper

Experimental Investigation on Use of Jatropha Oil Ethyl Easter and Diesel Blends in Small Capacity Diesel Engine

2013-09-08
2013-24-0172
Biodiesel in has gained great momentum in last few years and has been a subject of vast research all around the globe. Bulk of the research work carried out so far has been confined to production of methyl esters of vegetable oil that is known as biodiesel in the transesterification process. In the present study, jatropha oil ethyl ester (JOEE) was prepared using transesterification process with ethanol and KOH as a catalyst. The evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits of ASTM/EN standards. A small capacity diesel engine was fuelled with different blends of JOEE and diesel and various performances, emission and combustion characteristics were evaluated. The results suggested that brake thermal efficiency was increased and emissions of carbon monoxide, hydrocarbons and smoke opacity were found lower for JOEE blend confirming better combustion due to the oxygenated fuel and higher cetane rating.
Technical Paper

In-Cylinder Combustion and Emission Characteristics of an Agricultural Diesel Engine Fuelled with Blends of Diesel and Oxidatively Stabilized Calophyllum Methyl Ester

2016-02-01
2016-28-0140
In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
Technical Paper

Potential Utilization of the Blend of Orange Peel Oil Methyl Ester and Isopropyl Alcohol in CI Engine

2014-10-13
2014-01-2778
Diesel engines are employed particularly in the field of heavy transportation and agriculture on account of their higher thermal efficiency and durability. As these engines, are the backbones of contemporary global transportation and accounts a 30% of world's energy consumption, which is second highest after the industrial sector. Therefore, the fossil fuel consumption becomes the prime concern. Following the global energy crisis and the increasingly stringent emission norms, the search for alternative renewable fuels has intensified. Currently, biodiesel (BD) has been identified as the most attractive and practical choice to replace fossil fuel as the main source of energy, due to the similarity in the properties with conventional diesel. However, its development and application have been hindered by the high cost of required feedstock. Therefore, in recent years, researchers have been seeking the alternative sources of non-edible oil which are economical.
Technical Paper

Performance, Emission and Combustion, Analysis of Diesel Engine Fueled with Blends of Mahua Oil Methyl Ester and Diesel

2014-10-13
2014-01-2651
The rising cost and limited availability of crude oil in international market has provided an opportunity to look for substitute of fossil fuel. Scientists all over the world are experimenting on variety of renewable fuels for meeting the future energy demands. Bio origin fuels are fast becoming potential alternative resources to replace the fossil fuels. The vegetable oils, derived from oil seed crops have got 90 to 95% energy value of diesel on volume basis, comparable cetane number and can substitute upto 20% (v/v) of diesel fuel. Mahua seed oil is common ingredient of hydrogenated fat. Two-step transesterification process was employed to synthesize biodiesel from Mahua Oil (Madhuca-indica) and analysis of Physico-chemical properties as well as the combustion, performance and emission characteristics was done by taking 10, 20 and 100 % blend with diesel. The physico-chemical properties of the blends were found to be comparable to diesel.
Technical Paper

Process Optimization of Biodiesel Production from Sal Seed Oil using Response Surface Methodology [RSM] and Diesel

2015-04-14
2015-01-1297
Biodiesel production has been getting global awareness since Petroleum prices are escalating continuously. As biodiesel is gaining considerable demand, standards are vital for its commercialization and market introduction. Feedstocks availability has posed serious challenges, thus the need for non-edible and unexplored feedstocks has risen. In Indian context, Biodiesel is produced using sal seed oil which is potentially available in Indian forest as a non-edible feedstock. The present paper deals with the production optimization using design of experiments and fuel property characterization of Sal biodiesel (sal methyl esters). Transesterification process parameters like catalyst concentration (% w/w), Oil to Methanol molar ratio, reaction time (min) and reaction temperature (°C) were considered the significance factors and the response was taken as the Yield (% w/w). Experiment matrix with several combinations of factors was generated.
Technical Paper

Evaluation of Emission Characteristics of Blend of Algae Oil Methyl Ester with Diesel in a Medium Capacity Diesel Engine

2014-04-01
2014-01-1378
Primary energy sources can be divided into non-renewable and renewable. The over-exploration of non-renewable sources for energy availability imposes considerable impacts on the environment. Reducing the use of fossil fuels would significantly reduce the carbon dioxide emissions and other pollutants produced. The future drift for sustainable production of renewable energy is cautiously thoughtful for it has been increasingly understood that first generation biofuels, majorly produced from food crops that are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-edible feedstock such as microalgae, which potentially offers greatest opportunities in the longer term. Microalgae are considered a very promising feedstock for biodiesel production due to their very high yield and their no competition with food crops.
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel and Diesel Fuel in a Medium Capacity Compression Ignition Employing Urea-SCR with Cu-ZSM5

2014-04-01
2014-01-1499
The present world scenario faces a serious threat from increasing dependence on fossil fuels. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel may be considered as a good substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. In terms of emissions from biodiesel, the cause of concern continues to be the NOx emissions. Therefore, to compliment the functioning of biodiesels, Urea-SCR over Cu-ZSM5 catalyst is an effective option due to its ability to convert NOx into nitrogen and water. There has been increasing concerns that biodiesel feedstock may compete with food supply in the long term. The recent paper focuses on use of two non-edible oils mahua oil and fish oil (processed from waste produced by fish).
Technical Paper

Scope of Fe-ZSM5 Zeolite Based Urea-SCR with Fish Oil Bio-Diesel Fuel in Compressed Ignition Engine

2014-04-01
2014-01-1541
The present consumption rates and heavy dependence on fossil fuels pose a humongous threat to the environment. The increased pollution in urban areas is already causing serious sociological, ecological and economic implications. The issue of energy security led governments and researchers to look for alternate means of renewable and environment friendly fuels. Biodiesel has been one of the promising, and economically viable alternatives. The biodiesels are reported to cause reduction in CO, HC and PM emissions. However, NOx emissions are increased in case of biodiesel in CI engine. Therefore, a Urea-SCR over Fe-ZSM5 honeycomb substrate (400cpsi) zeolite catalyst after treatment system is an effective technology to reduce emissions for biodiesel applications. Exhaust gases pass through the catalyst and reactions take place along its surface, consequently converting NOx into nitrogen and H2O.
Technical Paper

Experimental Investigations of Metal Oxide Nano-Additives on Working Characteristics of CI Engine

2019-04-02
2019-01-0794
Biodiesel is a potential substitute for diesel and extensive research is carried in India on production and utilization of biodiesel from a variety of edible/non-edible, animal fat and waste oils. However, issues like stability, clogging, increased NOx, and high consumption rate etc. are some of the critical issues which are associated with long-term use of these alternative fuels in a diesel engine. The recent developments in science and technology may have concreted a method to create nano measure vigorous resources that have incredible benefits to micron sized constituents. Nano liquids may be a fresh period of compact-fluid complex constituents comprising of nano sized concrete elements disseminated into a base liquid. The present study investigates the effect of doping metal oxides nanoparticles with waste fish oil-based biodiesel. For the present study, the blends of fuel are prepared by using 30ppm each of titanium dioxide and alumina nanoparticles respectively.
X