Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Comparative Dynamic Analysis of Tire Tread Belt Detachments and Stepped Diameter (“Lumpy”) Tires

2007-04-16
2007-01-0846
In this study, tests were performed with modified tires at the right rear location on a solid axle sport utility vehicle to compare vehicle inputs and responses from both: (1) staged tire tread belt detachments, and (2) stepped diameter (“lumpy”) tires. Lumpy tires consist of equal size sections of tread that are vulcanized at equidistant locations around the outer circumference of the tire casing. Some have used lumpy tires in attempt to model the force and displacement inputs created by a tire tread belt separation. Four configurations were evaluated for the lumpy tires: 1-Lump, 2-Lump (2 lengths), and 3-Lump.
Technical Paper

Pole Impact Speeds Derived from Bilinear Estimations of Maximum Crush for Body-On-Frame Constructed Vehicles

2004-03-08
2004-01-1615
Accident reconstructionists use several different approaches to determine vehicle equivalent impact speed from damage due to narrow object impacts. One method that is used relates maximum crush to equivalent impact speed with a bilinear curve. In the past, this model has been applied to several passenger cars with unibody construction. In this paper, the approach is applied to a body-on-frame vehicle. Several vehicle-to-rigid pole impact tests have been conducted on a full-size pickup at different speeds and impact locations: centrally located across the vehicle's front and outside the frame rail. A bilinear model relating vehicle equivalent impact speed to maximum crush is developed for the impact locations. These results are then compared to results obtained from other body-on-frame vehicles as well as unibody vehicles. Other tests such as impacts on the frame rail and barrier impacts are also presented. Limitations to this bilinear approach are discussed.
X