Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

2014-04-01
2014-01-1104
A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
X