Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Paraffinic versus Olefinic Refinery Streams: An Engine Exhaust Emissions Investigation

1992-10-01
922377
To gain a better understanding of the exhaust emissions impact of olefins in a low aromatic, full boiling range gasoline, an evaluation of the before and after catalyst emissions of three highly olefinic refinery streams and three highly paraffinic refinery streams, blended 50/50 in motor alkylate, was conducted using a 3.1 L GM engine. The test fuels were also selected to consider the effects of volatility in addition to olefin concentration. The fuels were evaluated under three steady state engine operating conditions. The results of the tests indicate essentially only small differences in the before and after catalyst total hydrocarbons (THC) between the pairs of highly olefinic streams and the highly paraffinic streams at relatively the same volatility level, for two of the test conditions (2400RPM-light and moderate/heavy loads. The ozone forming potentials (OFP) for these fuels, across all three speed and load conditions, also show relatively small differences.
Technical Paper

The Achievement of ULEV Emission Standards for Large High Performance Vehicles

1993-03-01
930389
The development of technology suitable for meeting the CARB Ultra-low- emission-vehicle (ULEV) legislation has now become a main focus for vehicle manufacturers worldwide. This proliferation of interest is mainly a result of the increasing number of eastern US-states currently considering the adoption of CARB legislation and the indication that emission legislation in Europe and Japan for the turn of the century is likely to be of the same severity as CARB ULEV legislation. Current three way catalyst (TWC) emissions control technology suffers from low catalytic conversion efficiency of HC, CO and NOx pollutants during cold operation i.e. before catalyst light off. Cold start emissions generally contribute up to 70% of HC and CO tailpipe emissions during an FTP test. However, in some cases even early light-off of the catalyst, similar to hot operation is not sufficient to achieve catalytic conversion over a test cycle to reach ULEV emissions levels.
Technical Paper

Speciated Hydrocarbon Emissions from Aromatic, Olefinic, and Paraffinic Model Fuels

1993-03-01
930373
Speciated hydrocarbon emissions were measured at steady-state conditions in pre- and post-catalyst exhaust from a modern multi-valve fuel-injected and closed-loop controlled European gasoline engine tested on toluene, isooctane and diisobutylene. Unburned fuel contributed 70-80% of the total engine-out hydrocarbon emissions on toluene, but only 24% and <10% on isooctane and diisobutylene respectively except at idle where values were 71% and 47% respectively. Emissions from both of the aliphatic fuels were dominated by photochemically-reactive olefins such as isobutene and propene, plus ethyne, methane and formaldehyde. With the exception of ethyne, emissions of these compounds were much less from toluene. Even at rich conditions, most hydrocarbons were catalytically controlled to some extent, but the catalyst efficiency was dependant upon hydrocarbon composition.
X