Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Method to Determine Biogas Composition for Combustion Control

2002-05-06
2002-01-1708
This paper presents a methodology for a rapid determination of biogas composition using easily detectable physical properties. As biogas is mainly composed of three constituents, it is possible to determine its composition by measuring two physical properties and using specific ternary diagrams. The first part of the work deals with the selection of two physical properties, which are easy and inexpensive to measure, from a group comprising thermal conductivity, viscosity and speed of sound. Then, in the second part, a model to express these properties in terms of ternary composition is presented. It is demonstrated that the composition of a ternary gas mixture can be determined with good precision using the above. The model is applied to specific situations such as the online determination of the lower heating value of biogas without any complicated apparatus like calorimeters or batch techniques (gas chromatographs).
Technical Paper

An Experimental Study of Knock in a Natural Gas Fuelled Spark Ignition Engine

2001-09-24
2001-01-3562
Experiments were conducted on a single cylinder SI engine fuelled by natural gas. Equivalence ratios varying from 0.7 to 1.0 were used and the spark timing was changed from no knock to high knock conditions. Pressure crank angle data from 160 consecutive cycles was analysed. It was found that coefficient of variation of peak pressure (COVPP) and standard deviation of the angle of occurrence of peak pressure (SDAPP) can be used to set the engine for knock free operation. These parameters show a sudden rise from a minimum value that they attain near a spark timing where knock sets in. When the average knock intensity is low, there are two groups of cycles. The first comprises of non-knocking to slightly knocking ones. The other contains cycles with relatively high knock intensity. The sudden emergence of two groups is responsible for the observed trends of SDAPP. At high overall knock intensities the first group is absent.
Technical Paper

Experimental Investigation on Cycle by Cycle Variations in a Natural Gas Fuelled Spark Ignition Engine

2001-11-01
2001-28-0021
Experiments were conducted on a single cylinder, natural gas fuelled spark ignition engine. Air fuel ratio was varied from about stoichiometric to the lean limit at two different throttle positions with optimum spark timing. Subsequently the engine was tested at constant throttle and equivalence ratio with variable spark timing. COV (coefficient of variation) of IMEP (indicated mean effective pressure) and peak pressure increase with a reduction in equivalence ratio. When the engine starts to misfire there is a drastic increase in the COV of IMEP. Spark timing has a smaller effect on COV of IMEP than on COV of peak pressure. When the spark timing is advanced, COV of peak pressure attains a minimum value just before knock sets in. Prior cycle effects were seen when there was misfire. Spark timing had little influence on the frequency distribution of IMEPs of cycles, which was generally symmetrical about the mean.
Technical Paper

Combustion Properties Determination of Natural Gas Using Thermal Conductivity and CO2 Content

2005-10-24
2005-01-3774
Natural gas composition depends on when and where it is recovered. Variations of composition affect the performance of combustion systems and the accuracy of delivered energy in fiscal gas metering. This paper presents a methodology to determine combustion properties of natural gases (higher heating value, Wobbe index and the stoichiometric air-fuel ratio). A pseudo-gas formulation is used to determine a composition of the most influent constituents of the natural gas. The pseudo-composition is then determined by solving a nonlinear system of equations using thermal conductivity at three levels of temperature and the carbon dioxide concentration. The tested natural gases are chosen to represent typical European gases as well as to account for large variations of individual components. The error on the combustion properties is less than 0.5% for the most of the examined gases and below 1% for gases with high carbon dioxide fractions.
Technical Paper

Modeling of In-cylinder Pressure Oscillations under Knocking Conditions: Introduction to Pressure Envelope Curve

2005-04-11
2005-01-1126
High frequency pressure oscillations are generated under knocking conditions within the combustion chamber of Spark Ignition engines. Although acoustic-oscillation model can give the natural frequencies of these oscillations, very few mathematical models are today available, in scientific literature, to describe the oscillation deadening effect. An analytical formulation of the deadening has been highlighted. Analytical solution has been established for future ECU implementation. Coupling this new concept and an existing high-frequency model, an achieved model of the knocking pressure high frequencies is compared to experimental data. Good behavior is obtained on a natural gas fuelled spark ignition engine.
X