Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of the Inlet Flow Distribution on the Light-Off Behavior of a 3-Way Catalytic Converter

2003-03-03
2003-01-0937
Numerical simulations are increasingly assisting research and development in the field of emission control of automotive vehicles. Our work focuses on the prediction of the tail-pipe emissions, based on a numerical simulation of the automotive catalytic converter. Besides the prediction of the tail-pipe emissions, an understanding of the processes occurring inside a monolithic catalytic converter implies new opportunities for the design of the optimum exhaust gas system. In this paper, we present a three-dimensional transient numerical study of the influence of the velocity distribution in front of the inlet face on the thermal behavior of the monolith during the light-off of a 3-way catalytic converter. The differences in the thermal and chemical behavior due to the shape of the velocity distribution are discussed. The recently developed code DETCHEMMONOLITH /1/ is used for the numerical simulation.
Technical Paper

Three-Dimensional Simulation of the Transient Behavior of a Three-Way Catalytic Converter

2002-03-04
2002-01-0065
The ultimate goal in the numerical simulation of automotive catalytic converters is the prediction of exhaust gas emissions as function of time for varying inlet conditions, i.e. the simulation of a driving cycle. Such a simulation must include the calculation of the transient three-dimensional temperature-field of the monolithic solid structure of the converter, which results from a complex interaction between a variety of physical and chemical processes such as the gaseous flow field through the monolith channels, the catalytic reactions, gaseous and solid heat transport, and heat transfer to the ambience. This paper will discuss the application of the newly developed CFD-code DETCHEMMONOLITH for the numerical simulation of the transient behavior of three-way catalytic converters that have a monolithic structure.
X