Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Impact of Pre-Turbine Catalyst Placement on Methane Oxidation in Lean-Burn Gas Engines: An Experimental and Numerical Study

2017-03-28
2017-01-1019
The effect of increased pressure relevant to pre-turbine catalyst positioning on catalytic oxidation of methane over a commercial Pd-Pt model catalyst under lean conditions is investigated both experimentally and numerically. The possible gas phase reactions due to high temperature and pressure were tested with an inert monolith. Catalyst activity tests were conducted for both wet and dry gas mixtures and the effect of pressure was investigated at 1, 2 and 4 bar. Aside from the water in the inlet stream, the water produced by oxidation of methane in dry feed inhibited the activity of the catalyst as well. Experiments were carried out to check the effect of added water in the concentration range of water produced by methane oxidation on the catalyst activity. Based on the experimental results, a global oxidation rate equation is proposed. The reaction rate expression is first order with respect to methane and -1.15 with respect to water.
Technical Paper

Influence of Physical and Chemical Parameters on the Conversion Rate of a Catalytic Converter: A Numerical Simulation Study

2000-03-06
2000-01-0211
Monolithic three-way catalysts are applied to reduce the emission of combustion engines. The design of such a catalytic converter is a complex process involving the optimization of different physical and chemical parameters. Simple properties such as length, cell densities or metal coverage of the catalysts influence the catalytic performance of the converter. Numerical simulation is used as an effective tool for the investigation of the catalytic properties of a catalytic converter and for the prediction of the performance of the catalyst. To attain this goal, a two-dimensional flow field description is coupled with a detailed chemical reaction model. In this paper, results of the simulation of a monolithic single channel are shown. In a first step, the steady state flow distribution was calculated by a two dimensional simulation model. Subsequently, the reaction mechanism of the chemical species in the exhaust gas was added to the simulation process.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
X