Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

LIF Visualization of Liquid Fuel in the Intake Manifold During Cold Start

1995-10-01
952464
Laser induced fluorescence from a dye contained in Unocal RF-A gasoline was excited using 355nm light and the resulting fluorescence imaged (λ>420nm). In order to minimize the changes to the intake geometry the fluorescence was collected by a fiberoptic probe with an articulatible tip. The collected light was imaged onto an intensified CCD camera synchronized with the laser, which was timed to illuminate the intake port after the completion of injection. Cold-starts from 20°C were conducted on an engine dynamometer test stand with two fuel systems: pintle-type port fuel injection, and air-forced port fuel injection. When the injection timing and initial enrichment were optimized the transient emissions from the air-forced system were significantly reduced compared with the conventional system.
Technical Paper

Additive Effects on Atomization and Evaporation of Diesel Fuel Under Engine Conditions

1997-02-24
970795
The objective of this work was to establish whether two detergent-type additives(A and B) influence the drop size and evaporation of two Diesel fuels (1 and 2) under Diesel engine conditions. Two experiments were performed: visualization of liquid and vapor fuel by the exciplex technique in a motored single-cylinder engine and measurement of the Sauter mean diameter, total drop cross sectional area and total drop volume by laser diffraction in a spray chamber. The same Diesel injector and pump system were used in the two experiments. The engine tests were carried out using a high aromatic content fuel (1) particularly suited for the exciplex studies. These studies showed that additive A yielded a lower vapor signal than additive B, which in turn gave a lower vapor signal than untreated fuel. Spray chamber results were obtained for both fuel 1 and 2. Additive A reduced the evaporation of fuel 1 whereas additive B gave a smaller and less consistent affect.
Technical Paper

2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine

1989-02-01
890315
Two dimensional visualization of a pulsating, hollow-cone spray was performed in a motored, ported, high swirl, cup-in-head I.C. engine, using exciplex-forming dopants in the fuel, which produced spectrally separated fluorescence from the liquid and vapor phases. Illumination was by a laser sheet approximately 200 µm thick from a frequency tripled Nd:YAG laser, and image acquisition was by a 100 × 100 pixel diode array camera interfaced to a personal computer. Liquid and vapor phase fuel distributions are reported for engine speeds of 800 rpm and 1600 rpm, over a crankangle range spanning the injection event and subsequent evaporation and mixing. The beginning of injection was at 33° BTDC at 800 rpm and 47° BTDC at 1600 rpm. At 800 rpm, the spray angle is narrower than the 60° poppet angle, as expected from previous observations in a near-quiescent spray chamber.
Technical Paper

Three-Dimensional Visualization of Premixed-Charge Engine Flames: Islands of Reactants and Products; Fractal Dimensions; and Homogeneity

1988-02-01
881635
The structure of turbulent flames was examined in a premixed-charge, spark-ignition ported engine using a three-dimensional visualization technique with 10 ns time resolution and 350 µm best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300, 1200 and 2400 rpm with stoichiometric and lean propane/air mixtures. The second and third harmonic beams of an Nd-YAG laser (532 nm and 355 nm), along with the two strongest beams (first Stokes (683 nm) and first anti-Stokes (436 nm)) from a hydrogen Raman shifter pumped by the second harmonic were used to create four parallel laser sheets each of less than 300 microns thickness. The laser sheets were passed through a transparent quartz ring in the cylinder head parallel to the piston top with vertical separations between successive sheets ranging from 1.5 to 0.9 mm.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

1987-11-01
872074
A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
Technical Paper

On the Feasibility of Quantitative, Single-Shot, Spontaneous Raman Imaging in an Optically Accessible Engine Cylinder

1999-10-25
1999-01-3537
Two-Dimensional, single-shot spontaneous Raman measurements of methane concentration were performed in an optically accessible engine after direct injection with the use of modified air-assisted injector. The spatial resolution of the measurements was determined by the thickness of the laser sheet which was 0.8 mm. The error in the methane number density measurement was determined by the noise in the intensified camera output and was 16% of pure methane number density at the experimental conditions. Effective suppression of the stray light background was the main experimental difficulty. Satisfactory results were acquired only when the spark plug was substituted by a plug covered with a velvet-like, black piece of cloth. These preliminary results show that, for the specific engine configuration, fast mixing of the charge yields a very mild stratification after the end of injection.
X