Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

CFD Modeling of a DME CI Engine in Late-PCCI Operating Conditions

2023-04-11
2023-01-0203
Predictive combustion models are useful tools towards the development of clean and efficient engines operating with alternative fuels. This work intends to validate two different combustion models on compression-ignition engines fueled with Dimethyl Ether. Both approaches give a detailed characterization of the combustion kinetics, but they substantially differ in how the interaction between fluid-dynamics and chemistry is treated. The first one is single-flamelet Representative Interactive Flamelet, which considers turbulence-kinetic interaction but cannot correctly describe the stabilization of the flame. The second, named Tabulated Well Mixed, correctly accounts for local flow and mixture conditions but does not consider interaction between turbulence and chemistry. An experimental campaign was carried out on a heavy-duty truck engine running on DME at a constant load considering trade-off of EGR and SOI.
X