Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effect of Aero Covers on Underfloor Wind Noise; Conclusions from a Wind Tunnel Validated Aero-Vibro-Acoustic Model

2022-03-29
2022-01-0310
Low frequency interior wind noise is typically dominated by underfloor flow noise. The source mechanisms are fluctuating surface pressure loading from both flow turbulence and acoustic field levels developed in the semi-reverberant cavity between floor and road. Previous studies have used computation fluid dynamics (CFD) to estimate the aero-acoustic loading applied to a vibro-acoustic model, which is then used to predict the transmitted interior wind noise. This paper reports a new perspective in two respects. First it uses novel surface pressure microphone arrays to directly measure the underfloor aero-acoustic loading in the wind tunnel. Second, it considers two different underfloor aerodynamic configurations - with and without lightweight aero cover panels, which are installed primarily to reduce aerodynamic drag.
Technical Paper

Road Noise Modelling Using Statistical Energy Analysis Method

1995-05-01
951327
A mathematical model was developed to evaluate design options for control of road noise transmission into the interior of a passenger car. Both air-borne and structure-borne road noise over the frequency range of 200-5000 Hz was able to be considered using the Statistical Energy Analysis (SEA) method. Acoustic and vibration measurements conducted on a laboratory rolling road were used to represent the tire noise “source” functions. The SEA model was correlated to in car sound pressure level measurements to within 2-4 db accuracy, and showed that airborne noise dominated structure-borne noise sources above 400 Hz. The effectiveness of different noise control treatments was simulated and in some cases evaluated with tests.
Technical Paper

A Model Study of How Tire Construction and Materials Affect Vibration-Radiated Noise

1997-05-20
972049
A simple mathematical model was developed and experimentally validated to evaluate how the materials and construction of an automobile tire affect its vibration-radiated noise performance. The mathematical model uses Statistical Energy Analysis (SEA) with modal joint acceptance formulations for wavespeed and radiation efficiency of orthotropically-stiffened and pressurized cylindrical shells. Experimental validation of the model included wavenumber decomposition to determine the dispersion characteristics of an inflated, non-rolling tire in the laboratory. The model is used to conduct a preliminary study into how the various tire constituent materials and construction parameters influence the vibration-radiated noise performance.
Technical Paper

CFD-Based Wave-Number Analysis of Side-View Mirror Aeroacoustics towards Aero-Vibroacoustic Interior Noise Transmission

2013-04-08
2013-01-0640
It has been shown that internal transmission of wind noise is dependent on the external aerodynamic and acoustic excitation around the automobile. Flow over the A-pillar and side-view mirror induces strongly convecting turbulence and associated acoustics which excite the side-glass. A useful tool to understand and quantify these physics is to perform temporal Fourier analysis (auto-spectra) and spatial Fourier analysis (cross-spectra and wave-number decomposition). This study demonstrates the uses of wave-number decomposition to quantify the mechanisms associated with turbulent convection and acoustical propagation. A CFD computation using the commercial codes STAR-CCM+ is performed for the flow over a generalized side-view mirror in a freestream of 38m/s. LES-enabled turbulence is solved in a fully compressible framework so as to capture all the local acoustical propagation well beyond 3kHz.
Technical Paper

A Transient SEA Model for Transmission of Non-Stationary Wind Noise

2019-06-05
2019-01-1473
Automakers have reported that passenger perception of vehicle interior wind noise is strongly correlated to the non-Gaussian and non-stationary character of the exterior aero-acoustic wind loading. Researchers in other domains have shown that leptokurtic non-Gaussian loading (Kurtosis κ>3) can be synthesized by non-stationary modulation of otherwise Gaussian random loading. This paper introduces a transient statistical energy analysis (SEA) model for the aero-vibro acoustic transmission of non-stationary wind noise which uses the same approach - a modulation of otherwise Gaussian random fluctuating pressure loading, in each one third octave band. The authors have previously shown that the non-stationary character of random wind loading can be measured in a wind tunnel or on the road with a suitable surface pressure microphone array.
X