Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Technical Paper

Possible Influence of High Injection Pressure on Diesel Fuel Stability: A Review and Preliminary Study

2009-06-15
2009-01-1878
Recent developments in diesel engines and fuel injection equipment combined with the change to ULSD and bio-blends have resulted in increased reports regarding deposits within injectors and filters. A review of known fuel degradation mechanisms and other relevant chemistries suggests the effects of high pressure and high shear environments should be examined as the most probable causes of increasing deposit formation. Existing fuel quality tests do not correlate with reported fouling propensity. Analytical studies have shown that there are only subtle chemical changes for the materials within the standard diesel boiling range. The implications for further scientific study are discussed.
Technical Paper

Service Application of a Novel Fuel Borne Catalyst Dosing System for DPF Retrofit

2005-04-11
2005-01-0669
A dosing system has been developed to facilitate the addition of a fuel borne catalyst (FBC) to a vehicle's fuel supply. The on-board dosing system was primarily designed to reduce cost and complexity. One embodiment of the design provided an additional benefit, namely the automatic adjustment of treat rate according to duty cycle. For high duty operating cycles where average exhaust gas temperatures are high, a low treat rate of FBC is supplied. Conversely at low duty where the exhaust temperature is lower, a higher treat of FBC is delivered. Data from field applications are presented to demonstrate this feature.
Technical Paper

Novel Additive for Particulate Trap Regeneration

1995-10-01
952355
One of the most promising ways to insure the periodic regeneration of a particulate trap, consists of additising the fuel with organo-metallic compounds. The present paper deals with a novel alkali product, able to promote natural regenerations, for exhaust temperatures as low as 200 °C, and treatment rates as low as 5 ppm metal. Tests have been carried out on a soot reactor and on an engine bench, with various trap locations in the exhaust, showing that the regeneration occurrence depends on temperature, soot mass loaded inside the porous structure and engine conditions. A complete trap cleaning still needs gas temperatures up to 400 °C, which can be encountered for high load conditions of the engine.
Technical Paper

Fouling of Two Stage Injectors - An Investigation into Some Causes and Effects

1997-05-01
971619
In the quest for improved fuel efficiency and reduced CO2 emissions, motor manufacturers are increasingly turning to the High Speed Direct Injection (HSDI) diesel engine for passenger car use. To achieve acceptable levels of noise and emissions at low loads two stage injection is being utilised. Such injection systems are prone to nozzle coking due to the small fuel metering holes, low opening pressures and low fuel flow rates under part load operation. This coking leads to a rapid deterioration of emissions performance. This paper describes work done to investigate conditions leading to this phenomena and the possible mechanisms involved.
Technical Paper

Metal Emissions, NO2 and HC Reduction from a Base Metal Catalysed DPF/FBC System

2006-04-03
2006-01-0420
Due to concerns over NO2 emissions from platinum catalysts a base metal catalysed diesel particulate filter (DPF) has been developed and used in combination with fuel borne catalysts (FBC). Results are presented showing reductions in HC, NOX, NO2, and PAH emissions along with an assessment of the emissions of metals used in the FBC and the catalysed DPF. This data is used to show the likely reduction in overall iron and other metal emissions as a result of using the catalysed DPF/FBC system. A similar system has also been assessed for durability for over 2000 hours when fitted to a bus in regular service in Switzerland.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Technical Paper

Improved Diesel Particulate Filter Regeneration Performance Using Fuel Soluble Additives

1999-10-25
1999-01-3562
Interest has been growing in many countries in the potential use of diesel particulate filters (DPF). This type of after treatment technology has been shown to make very significant reductions in both the mass of particulate emitted in diesel exhaust gas, and also in the number of fine particulates, which have been linked in recent years with concerns for human health. Work carried out during a development programme investigating the capability of fuel soluble metallic additives to assist DPF regeneration, indicated superior performance from a novel combination of metals in fuel soluble form. Earlier work showed that a fuel soluble combination of organo-metallic additives based on sodium and strontium gave very effective regeneration characteristics, and was capable of burning out carbon at temperatures from about 160°C.
X