Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Application of Extension Evaluation Method in Development of Novel Eco-friendly Brake Materials

2009-10-11
2009-01-3019
Extenics is a new cross discipline to study rules and methods of solving contradictory problems in the real world. The basic concepts and theoretical frame of extenics are briefly introduced in this paper. Based on the merit of extenics, the extension evaluation method was applied to evaluate the brake materials according to a five-grade criterion established in this study. Considering the results computed by the original and simplified models, the similar conclusions were made: all four brake samples, marked A - D, were evaluated in the first grade based on the calculated dependence degrees, and sample B was judged as the best performing friction material with the highest dependence degree and the lowest wear rate.
Technical Paper

Friction and Wear Responses with Metallic Composite Materials to Replace Copper and Copper Alloys in Brake Pad Formulations

2016-09-18
2016-01-1912
Copper and copper alloys are widely used in friction materials such as brake pad formulations as one of key ingredients by providing good thermal conductivity and high temperature friction stability to achieve desired friction performance, fade and wear resistance. However, the use of copper or copper containing material is being restricted in brake pads due to environment and health concerns. Extensive works have been made to explore the copper substitutes but most of these efforts became ineffective and failed with issues either thermal fade or excessive pad/rotor wear. In this paper, friction and wear responses were examined when a metallic composite material was used as the copper substitute in NAO and Low-met brake formulations where the copper and copper alloys were added 8% and 22% respectively.
Technical Paper

Performance of Low-metallic Cu-free Brake Pads with Two Different Graphite Types

2015-09-27
2015-01-2677
Automotive brake lining materials are complex composites consisting of numerous ingredients allowing for their optimal performance. Since regulations are increasingly limiting Cu content in brake pads and Cu exhibits extremely high thermal conductivity, graphites being excellent heat conducting materials themselves, are often considered for use as potential Cu replacement. This paper surveys the role of two types of carbons (Superior Graphite) with high thermal conductivity but different mechanical properties and morphology: the so-called i) purified flake graphite (PFG) and the ii) resilient graphitic carbon (RGC). A successful “high-end” commercial low-metallic brake pad was re-formulated (SIU Carbondale) by removing of over 20 wt. % of Cu and replacing it with a cocktail of ingredients including 15 wt. % of these two graphite types (RGC and PFG).
X