Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Automotive Brake Lining Characterization

1997-10-06
973024
A number of brake lining materials representative of original equipment in US, Japanese and European automobiles were characterized in order to determine their composition and microstructure. Their frictional performance was subsequently determined using the Friction Assessment and Screening Test (FAST machine). The goal of this work was to identify each constituent of the friction material, to deduce their individual role in the friction process and to determine the effect of the microstructure on the wear properties.
Journal Article

Optimization of Brake Friction Materials Using Mathematical Methods and Testing

2015-09-27
2015-01-2661
Brake linings have complex microstructure and consist of different components. Fast growing automotive industry requires new brake lining materials to be developed at considerably shorter time periods. The purpose of this research was to generate the knowledge for optimizing of brake friction materials formula with mathematical methods which can result in minimizing the number of experiments/test, saving development time and costs with optimal friction performance of brakes. A combination of processing methods, raw materials and testing supported with the Artificial Neural Network (ANN) and Taguchi design of experiment (DOE) allowed achieving excellent results in a very short time period. Friction performance and wear data from a series of Friction Assessment and Screening Test (FAST) were used to train an artificial neural network, which was used to optimize the formulations. The averaged COF, COF variation and wear were used as the output parameters.
Technical Paper

Performance of Low-metallic Cu-free Brake Pads with Two Different Graphite Types

2015-09-27
2015-01-2677
Automotive brake lining materials are complex composites consisting of numerous ingredients allowing for their optimal performance. Since regulations are increasingly limiting Cu content in brake pads and Cu exhibits extremely high thermal conductivity, graphites being excellent heat conducting materials themselves, are often considered for use as potential Cu replacement. This paper surveys the role of two types of carbons (Superior Graphite) with high thermal conductivity but different mechanical properties and morphology: the so-called i) purified flake graphite (PFG) and the ii) resilient graphitic carbon (RGC). A successful “high-end” commercial low-metallic brake pad was re-formulated (SIU Carbondale) by removing of over 20 wt. % of Cu and replacing it with a cocktail of ingredients including 15 wt. % of these two graphite types (RGC and PFG).
Journal Article

Identification of Organic Compounds Released from Low-Metallic Automotive Model Brake Pad and its Non-Airborne Wear Particles

2015-09-27
2015-01-2662
The brake wear contribution to the environmental pollution has been extensively discussed, with major focus on asbestos and heavy metals released to the environment. Only limited attention was paid to released organic compounds generated during friction processes, although the organic and carbonaceous components are not the minor part in brake lining formulations. Friction processes in brakes are associated with relatively high temperatures and high pressures on the friction surfaces which relates to the thermal decomposition of the organic components in friction materials and to brake lining thermal fade. Thus, this study focuses on the identification of organic compounds released from a model low metallic brake material.
X