Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Critical Comparisons of US and European Dynamic Side Impacts

1997-02-24
970128
Global engineering is increasingly becoming a practice within the automotive industry. Due to added engineering and manufacturing benefits, more and more new vehicles are being developed with common structure to meet the consumer needs in many local regions. While vehicle development and manufacturing process is becoming global, automotive safety regulations in various parts of the world have not been as uniform. A good example is the differing requirements for dynamic side impact protection of new vehicles. United States National Highway Traffic Safety Administration (NHTSA) and European Union (EU) have each produced their own distinct test procedures such as, different barrier faces, impact configurations, and anthropomorphic test devices (dummies). Although both test procedures have the same final objective estimate occupant responses in side impacts, they differ greatly in execution and emphasis on occupant response requirements.
Technical Paper

Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA

2015-11-09
2015-22-0004
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV’s), and medium-to-heavy vehicles (MHV’s) in the fleet, and the frequency of their interactions with one another in side impacts, were considered.
Technical Paper

EVALUATION OF VEHICLE COMPATIBILITY IN VARIOUS FRONTAL IMPACT CONFIGURATIONS

2001-06-04
2001-06-0097
Light truck vehicles (LTVs), sport utility vehicles (SUVs), and vans collectively make up a growing segment of the total automotive fleet sales, particularly in the United States. The National Highway Traffic Safety Administration (NHTSA) has identified this trend and has increased the extent of its research in vehicle-to-vehicle compatibility. Additionally, vehicle compatibility concerns have also been emphasized by International Harmonization Research Activity (IHRA). Accordingly, with intention to further enhance road safety, research in the area of crash compatibility between cars and LTVs in different crash configurations is of significant importance. This paper describes a part of ongoing research at Ford Motor Company to further investigate the effect of compatibility in SUV/LTV-to-Car crashes.
X