Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermal Management of a Four-way Catalyst System with Alternative Combustions for Achieving Future Emissions Standard

2007-09-16
2007-24-0103
Four-way catalyst system consisting of diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and lean NOx trap (LNT) with alternative combustion such as low temperature combustion (LTC) and premixed controlled compression ignition (PCCI) is one of the effective ways to achieve the US Tier 2 Bin 5 and future European emissions for light duty diesel vehicles. However, thermal responses such as substrate temperature and temperature gradient of each catalyst component in the exhaust treatment system are different under different combustion modes and operation conditions. One exhaust treatment component's performance or durability can not be sacrificed for the sake of another. In this paper, thermal management strategies for exhaust treatment component temperature and temperature gradient by controlling lean and rich conditions of low temperature combustions as well as premixed controlled combustion, EGR rate and exhaust flow are demonstrated on a Renault G9T600 engine.
Journal Article

Catalytic Formulation for NO2 Suppression and Control

2008-06-23
2008-01-1548
To counter the adverse impact on the formation of harmful unregulated emissions such as nitro-polycyclic aromatic hydrocarbons (NPAH), catalyst companies and researchers have been developing catalytic coatings that have the capability of suppressing the formation of NO2. NO2 is formed at low exhaust temperatures with potentially greater concentrations at part load engine operation. Haldor Topsoe, a catalyst company from Denmark, developed such a catalytic coating for DPFs. A sample was provided to Southwest Research Institute (SwRI) to conduct this research with a view of potentially improving NO2-suppressing formulations in the future. The Haldor Topsoe diesel particulate filter (DPF) with its novel coating was tested together with three other DPFs and the results confirmed the capability of this DPF to suppress the formation of NO2. This characteristic was apparent in all five engine test modes selected to cover the full engine operating range.
X