Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Spray Penetrations of Ethanol, Gasoline and Iso-Octane in an Optically Accessible Spark-Ignition Direct-Injection Engine

2014-11-01
2014-01-9079
The spray development of ethanol, gasoline and iso-octane has been studied in an optically accessible, spark-ignition direct-injection (SIDI) engine. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup.
Technical Paper

Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2016-10-17
2016-01-2303
Ethanol has been selected as a fuel for gasoline compression ignition (GCI) engines realising partially premixed charge combustion, considering its higher resistance to auto-ignition, higher evaporative cooling and oxygen contents than widely used gasoline, all of which could further improve already high efficiency and low smoke/NOx emissions of GCI engines. The in-cylinder phenomena and engine-out emissions were measured in a single-cylinder automotive-size common-rail diesel engine with a special emphasis on double injection strategies implementing early first injection near BDC and late second injection near TDC.
Technical Paper

Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2017-03-28
2017-01-0742
The present study aims to evaluate the effects of engine speed on gasoline compression ignition (GCI) combustion implementing double injection strategies. The double injection comprises of near-BDC first injection for the formation of a premixed charge and near-TDC second injection for the combustion phasing control. The engine performance and emissions testing of GCI combustion has been conducted in a single-cylinder light-duty diesel engine equipped with a common-rail injection system and fuelled with a conventional gasoline with 91 RON. The double injection strategy was investigated for various engine speeds ranging 1200~2000 rpm and the second injection timings between 12°CA bTDC and 3°CA aTDC.
Technical Paper

A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine

2021-04-06
2021-01-0526
A hydrogen-diesel dual direct injection (H2DDI) combustion strategy in a compression-ignition engine is investigated numerically, reproducing the configuration of previous experimental investigations. These experiments demonstrated the potential of up to 50% diesel substitution by hydrogen while maintaining high engine efficiency; nevertheless, the emission of NOx increased compared with diesel operation and was strongly dependent on the hydrogen injection timing. This implies the efficiency and NOx emission are closely associated with hydrogen charge stratification; however, the underlying mechanisms are not fully understood. Aiming to highlight the hydrogen injection-timing influence on hydrogen/air mixture stratification and engine performance, the present study numerically investigates the mixture formation and combustion process in the H2DDI engine concept using Converge, a three-dimensional fluid dynamics simulation code.
Technical Paper

Mechanisms of NOx Production and Heat Loss in a Dual-Fuel Hydrogen Compression Ignition Engine

2021-04-06
2021-01-0527
The combustion process of a homogeneous hydrogen charge in a small-bore compression ignition engine with diesel-pilot ignition was simulated using the CONVERGE computational fluid dynamics code. Analysis of the simulation results aimed to understand the processes leading to NOx production and heat loss in this combustion strategy, and their dependence on the hydrogen fuel energy fraction. Previous experimental results demonstrated promising performance, but this comes with a penalty in increased NOx emissions and potentially higher heat losses. The present study aims to enhance understanding of the mechanisms governing these phenomena. The simulated engine was initialised with a lean homogeneous hydrogen-air mixture at BDC and n-dodecane was injected as a diesel surrogate fuel near TDC. The simulations were validated based on experimental results for up to 50% hydrogen energy fraction, followed by an exploratory study with variation of the energy fraction from 0% to 90%.
Technical Paper

A Comparative Analysis on the Spray Penetration of Ethanol, Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine

2014-04-01
2014-01-1413
This study aims to clarify the spray development of ethanol, gasoline and iso-octane fuel, delivered by a multi-hole injector and spark-ignition direct-injection (SIDI) fuelling system. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup.
X