Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Fundamental Model for Flame Kernel Formation in S. I. Engines

1992-10-01
922243
A detailed, one-dimensional, time dependend model is presented, describing flame kernel development in spark ignition engines which explicitely accounts for all fundamental properties of the ignition system (supplied electrical energy and power, discharge mode, energy transfer efficiency to spark plasma, plasma temperature distribution, gap width, heat losses to electrodes and chamber walls), of the combustible mixture (pressure, temperature, equivalence ratio, residual gas fraction, laminar burning velocity, type of fuel) and of the flow field (mean flow velocity, turbulence intensity, strain, characteristic time and length scales, flame holder effects). The model is based on the strained flamelet model and predicts kernel growth consistently under virtual all relevant physical/chemical conditions. Model predictions have been verified in extensive studies in an optical engine over a wide range of physical/chemical parameters using advanced optical and laser optical diagnostics.
Technical Paper

Ignition System Integrated AC Ion Current Sensing for Robust and Reliable Online Engine Control

2000-03-06
2000-01-0553
1 A recent breakthrough in understanding the origin of ion signals from operating combustion engines [12] led to a new approach in integrating advanced ion current sensing into a compact ignition system. Thus it is now possible to continuously monitor mixture, ignition and combustion properties through online ion current recordings via a novel AC technique. In this paper this AC technique is compared to the standard DC technique and its known drawbacks: expensive high voltage components, sensitivity to plug fouling and expensive electronics. The AC technique is based on the specific properties of the electrical field of spark plugs being characterized by a point source with an extreme inhomogeneity of the electrical field due to the small center electrode. This causes a distinct diode characteristic of the ion signal: very low signals for negative voltages and high signals for positive ion sensing voltages, respectively.
X