Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

CFD Simulation and Validation of the Scavenging Process in a 125cc 2-Stroke Racing Engine

2006-11-13
2006-32-0061
Computational Fluid Dynamics (CFD) is frequently used to predict complex flow phenomena and assist in engine design and optimization. The scavenge process within a 2-stroke engine is key to engine performance especially in high performance racing applications. In this paper, FLUENT CFD code is used to simulate the scavenging process within a 125cc single cylinder racing engine. A variety of different port designs are simulated and scavenge characteristics compared and contrasted. The predicted CFD results are compared with measured scavenge data obtained from the QUB single-cycle scavenge rig. These results show good agreement and provide valuable insight into the effect of port design features on the scavenging process.
Technical Paper

Catalyst Deactivation on a Two-Stroke Engine

1998-09-14
982015
With the legislative demands increasing on recreational vehicles and utility engined applications, the two-stroke engine is facing increasing pressure to meet these requirements. One method of achieving the required reduction is via the introduction of a catalytic converter. The catalytic converter not only has to deal with the characteristically higher CO and HC concentration, but also any oil which is added to lubricate the engine. In a conventional two-stroke engine with a total loss lubrication system, the oil is either scavenged straight out the exhaust port or is entrained, involved in combustion and is later exhausted. This oil can have a significant effect on the performance of the catalyst. To investigate the oiling effect, three catalytic converters were aged using a 400cm3 DI two-stroke engine. A finite level of oil was added to the inlet air of the engine to lubricate the internal workings. The oil flow rate is independent of the engine speed and load.
X