Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hydrogen Internal Combustion Engine Strategies for Heavy-Duty Transportation: Engine and System Level Perspective

2024-01-16
2024-26-0175
Hydrogen internal combustion engines (H2ICE) offer a cost-effective solution to decarbonize transport by combining a lower carbon intensity fuel with mature and established internal combustion engine technology. While vehicles running with hydrogen have been demonstrated over the years, this fuel's physical and chemical properties require modifications and upgrades on the vehicle from an engine and system-level perspective. In addition, market-specific regulatory and economic factors can also constrain the realization of optimal hydrogen powertrain architectures. Therefore, this paper reviews the impact of hydrogen use on combustion, injection, air management, and after-treatment systems, indicating the different strategies used to enable effective H2ICE strategies from an efficiency, cost, and safety standpoint.
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
X