Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Photocatalytic Oxidation-Based TOC Analyzer Part II: Effect of Reactor Design and Operation Parameters on Oxidation Efficiency of VOCs

2009-07-12
2009-01-2545
This project sought to develop a photocatalytic oxidation (PCO) based total organic carbon (TOC) analyzer for real time monitoring of air quality in spacecraft. Specific requirements for this application were to convert volatile organic contaminants (VOC) into CO2 stoichiometrically in a single pass through a small reactor with low power requirement. One of the greatest challenges of this TiO2-mediated PCO was the incomplete oxidation of some recalcitrant VOCs leading to less reactive intermediates that deactivate the catalyst over time. Dichloromethane (DCM) is one of these VOCs. The effect of some design factors (e.g. TiO2 catalyst surface area to volume ratio and UV photon flux field) as well as operating conditions of an annular reactor (e.g. VOC residence time and relative humidity) on the efficiency in converting DCM to CO2 were investigated.
Technical Paper

Characterization of Nutrient Solution Changes During Flow through Media

2005-07-11
2005-01-2774
A research project has begun to identify the best cultivar for strawberry production as part of an advanced life support system for space. For the cultivar trials, hydroponic systems will be used, so the plants can be grown optimally under controlled environmental conditions and without water stress. The objectives of this project were to determine changes in nutrient solution characteristics, specifically dissolved oxygen (DO), electrical conductivity (EC), hydrogen ion concentration (pH), and temperature, versus four different flow rates (0.5, 1.0, 2.0, and 3.6 L·min−1) at fixed distances in the hydroponic channel with and without media. Three media treatments were used: 1) no media, 2) arcillite, and 3) perlite. The results showed that the highest flow rate (i.e., 3.6 L min−1) exhibited the most uniform conditions of all nutrient solution characteristics and for each of the media treatments over the 7.92 m length of channel.
Technical Paper

Low Pressure Greenhouse Concepts for Mars: Atmospheric Composition

2002-07-15
2002-01-2392
The main principles of artificial atmospheric design for a Martian Greenhouse (MG) are described based on: 1. Cost-effective approach to MG realization; 2. Using in situ resources (e.g. CO2, O2, water); 3. Controlled greenhouse gas exchange by using independent pump in and pump out technologies. We show by mathematical modeling and numerical estimates based on reasonable assumptions that this approach for Martian deployable greenhouse (DG) implementation could be viable. A scenario of MG realization (in terms of plant biomass/photosynthesis, atmospheric composition, and time) is developed. A list is given of technologies (natural water collection, MG inflation, oxygen collection and storage, etc.) that are used in the design. The conclusions we reached are: 1. Initial stocks of oxygen and water probably would be required to initiate plant germination and growth; 2. Active control of MG ventilation could provide proper atmospheric composition for each period of plant growth; 3.
X