Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Baseline Environmental Testing of Candidate Salad Crops with Horticultural Approaches and Constraints Typical of Spaceflight

2003-07-07
2003-01-2481
The first spaceflight opportunities for Advanced Life Support (ALS) Project testing with plants will likely occur with missions on vehicles in Low Earth Orbit, such as the International Space Station (ISS). In these settings, plant production systems would likely be small chambers with limited electrical power. Such systems are adequate for salad-type crops that provide moderate quantities of fresh, flavorful foods to supplement the crew diet. Successful operation of salad crop systems in the space environment requires extensive ground-based testing with horticultural methodologies that meet expected mission constraints. At Kennedy Space Center, cultivars of radish, onion, and lettuce are being compared for performance under these “flight-like” conditions.
Technical Paper

Characterization of Nutrient Solution Changes During Flow through Media

2005-07-11
2005-01-2774
A research project has begun to identify the best cultivar for strawberry production as part of an advanced life support system for space. For the cultivar trials, hydroponic systems will be used, so the plants can be grown optimally under controlled environmental conditions and without water stress. The objectives of this project were to determine changes in nutrient solution characteristics, specifically dissolved oxygen (DO), electrical conductivity (EC), hydrogen ion concentration (pH), and temperature, versus four different flow rates (0.5, 1.0, 2.0, and 3.6 L·min−1) at fixed distances in the hydroponic channel with and without media. Three media treatments were used: 1) no media, 2) arcillite, and 3) perlite. The results showed that the highest flow rate (i.e., 3.6 L min−1) exhibited the most uniform conditions of all nutrient solution characteristics and for each of the media treatments over the 7.92 m length of channel.
Technical Paper

Spinach: Nitrate Analysis of an Advanced Life Support (ALS) Crop Cultured Under ALS Candidate Artificial Light Sources

1999-07-12
1999-01-2107
Nitrate concentration in spinach and lettuce is known to be influenced by light quantity. The enzyme nitrate reductase is regulated by phytochrome in some species, and in the presence of light, electrons that reduce nitrite to ammonium come from photosynthetic electron transport. It was hypothesized that light quality as well as light quantity may be used to manipulate nitrate concentration in spinach. To test this, narrow-band wavelength light-emitting diode (LED) sources (670 nm and 735 nm peak emission) were utilized in combination with cool white fluorescent (CWF) lamps. Nitrate concentration was compared in spinach seedlings grown for four weeks under CWF, followed by one of three 5-day pre-harvest light treatments. The three different light quality regimes were 1) CWF, 2) CWF + RED (670 nm) LED, and 3) CWF + FR (735 nm LED).
X