Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cylinder Deflection Analysis: An Evaluation Technique Which Can Lead to Improved Reliability and Efficiency in Small Light Weight I. C. Engines

1990-09-01
901636
Light weight quiet small internal combustion engines that meet cost and required reliability parameters are important in the consumer product market as well as in the industrial environment. In the design of these lightweight powerplants, accurate analysis of factors which influence immediate and long-term effects is essential. Hologram interferometry is used to provide a full field view of engine cylinder wall deformations which may lead to noise, fatigue and related inefficiencies. The technique allows for the evaluation of cylinder deformation caused by thermal and mechanical loads. Static loads are applied to predict the deformation of the engine at specific points in the operating cycle.
Technical Paper

Evaluation of Cylinder Bore and Cylinder Head Deformations Using Holographic Interferometry

1991-02-01
910433
In the design of automotive and heavy equipment engines, accurate analysis of factors which influence immediate and long-term effects is essential. Fastener torque, thermal and pressure variations are utilized to evaluate basic sensitivity of the engine to these parameters by measurement of cylinder bore and cylinder head distortions. Holographic interferometry was used to measure the cylinder deformation caused by the applied thermal and mechanical loads. A cast iron V-6 engine was used as the test engine. Influences of bolt torquing, as would occur during initial assembly and/or service were evaluated. Pressure on the cylinder walls was simulated by creating a vacuum in the water jackets of the engine block. The effects of thermal loads were evaluated using a temperature controlled liquid flowing through the water jackets. Incremental steady-state loads were applied to investigate the deformation of the engine at specific points in the operating cycle.
X