Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Thermoelectric Integrated Membrane Evaporation Subsystem Operational Improvements

1984-07-01
840934
A three-man preprototype Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) has been developed to provide high quality water recovery from waste fluids on extended duration space flights. In the most recent effort, a number of improvements have been made to simplify subsystem operation and increase performance. These modifications include changes to the hollow fiber membrane evaporator, the condensing section of the thermoelectric heat pump, and the electronic controller logic and display. This paper describes the results of the test program that was conducted to evaluate the implemented improvements. In addition, an advanced design concept is discussed that will provide lower electrical power consumption, greater water production capacity, lower weight, and a smaller package than the present subsystem configuraton.
Technical Paper

Test Results on Reuse of Reclaimed Shower Water - A Summary

1989-07-01
891443
A microgravity whole body shower and waste water recovery system were evaluated in three separate closed loop tests at NASA/JSC. These tests covered a period from August 1985 to June 1987 in which shower waste water was reclaimed and reused for showering. Test persons showered in a preprototype whole body shower following a protocol similar to that anticipated for the Space Station. Each test was performed by using different water recovery system technologies which included phase change distillation and two separate reverse osmosis processes. These were integrated with post-treatment for the final purification of the reclaimed water. The phase change, a preprototype Thermoelectric Hollow Fiber Membrane Evaporation Subsystem was used for the initial test with chemical pretreatment of the shower waste water input. A reverse osmosis dynamic membrane system was used for the second test and a 2-stage ultrafiltration/reverse osmosis system for the third test.
Technical Paper

Results on Reuse of Reclaimed Shower Water

1986-07-14
860983
A microgravity whole body shower (WBS) and a waste water recovery system (WWRS) were used in a closed loop test at the Johnson Space Center. The WWRS process involved chemical pretreatment, phase change distillation and post-treatment. A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem (TIMES) was used for distillation after pretreatment and the post-treatment was accomplished with activated carbon, mixed ion exchange resin beds and microbial check valve (MCV) iodine bactericide dispensing units. The purposes of this test were to evaluate a NASA approved Shuttle soap for whole body showering comfort; evaluate the effects of the shower water on the WBS and the TIMES; and evaluate purification qualities of the recovered water in a closed loop operation.
X