Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cyclic Variation in a Firing Spray-Guided Gasoline Direct Injection Engine

2008-04-14
2008-01-1073
Planar Laser-Induced Fluorescence has been widely accepted and applied to measurements of fuel concentration distributions in IC engines. The need for such measurements has increased with the introduction of Direct Injection (DI) gasoline engines, where it is critical to understand the influence of mixture inhomogeneity on ignition and subsequent combustion, and in particular the implications for cyclic variability. The apparent simplicity of PLIF has led to misunderstanding of the technique when applied to quantitative measurements of fuel distributions. This paper presents a series of engineering methods for optimizing, calibrating and referencing, which together demonstrate a quantitative measure of fuel concentration with an absolute accuracy of 10%. PLIF is widely used with single component fuels as carriers for the fluorescent tracers.
Technical Paper

Vauxhall 14-40 - an 80th Year Review of its Technology

2002-03-04
2002-01-0452
The Vauxhall 14-40 was introduced in 1922 and is a good example of contemporary best practice. In its first 20 years Vauxhall had established a strong reputation for sporting performance, and the 14-40 was their first vehicle aimed at the middle classes. The 14-40 has extensive use of aluminum alloy castings, a unitary engine clutch and gear box with a torque tube coupling to the back axle, half elliptic front springs with a beam axle and cantilevered rear leaf springs. The engine was heavily influenced by Ricardo, so as to have low friction levels and a good combustion performance. The engine design will be reviewed in the context of the fuel available in the 1920s. This paper reviews the vehicle technology in the context of its contemporaries, and makes use of contemporary engine performance data for tuning a simple engine model, the results of which are to be used in a vehicle simulation.
Technical Paper

Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents

2000-03-06
2000-01-0245
The first part of the paper is a brief review of the techniques needed for measuring the voltage and current during the ignition process. These techniques have been used in test rigs and an engine to gain insights into the breakdown and subsequent discharge development. New correlations are presented for breakdown voltage as functions of spark plug gap, gas composition, temperature and pressure. The discharge voltage is affected by the flow, so an elevated pressure flow rig was used to look at the effect of flow and pressure on the discharge voltage history, with different stored energies in the ignition coil. This study led to a model for the discharge voltage history, from which it was possible to deduce the flow velocity through the spark plug gap. Finally, these techniques were applied to a single cylinder, 4-valve, pent-roof combustion chamber SI engine, for determining the cycle-by-cycle variations in velocity through the spark plug at the time of ignition.
Book

Automotive Engineering Fundamentals

2004-04-30
In the introduction of Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball provide a fascinating and often amusing history of the passenger vehicle, showcasing the various highs and lows of this now-indispensable component of civilized societies. The authors then provide an overview of the publication, which is designed to give the student of automotive engineering a basic understanding of the principles involved with designing a vehicle. From engines and transmissions to vehicle aerodynamics and computer modeling, the intelligent, interesting presentation of core concepts in Automotive Engineering Fundamentals is sure to make this an indispensable resource for engineering students and professionals alike.
X