Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Conversion of a Diesel Engine for Gaseous Fuel Operation at High Compression Ratio

1991-02-01
910849
A Waukesha VR 220 naturally aspirated Diesel Engine has been modified to operate with a high compression ratio fast-burn spark-ignition combustion system. Since the application of greatest interest is for Combined Heat and Power (CHP), the majority of data have been obtained with the engine operating at full throttle and 1500 rpm. The philosophy of the open chamber combustion system design is described, and this includes a discussion on the selection of the compression ratio. Results are presented for the energy balance and the emissions, for a wide range of air fuel ratios. The experiments have been conducted with natural gas and natural gas/carbon dioxide mixtures (to simulate bio-gas). Comparisons are made with the baseline engine performance data, some of which has been published earlier(1)*.
Technical Paper

Particulate and Hydrocarbon Emissions from a Spray Guided Direct Injection Spark Ignition Engine with Oxygenate Fuel Blends

2007-04-16
2007-01-0472
The blending of oxygenated compounds with gasoline is projected to increase because oxygenate fuels can be produced renewably, and because their high octane rating allows them to be used in substitution of the aromatic fraction in gasoline. Blending oxygenates with gasoline changes the fuels' properties and can have a profound affect on the distillation curve, both of which are known to affect engine-out emissions. In this work, the effect of blending methanol and ethanol with gasoline on unburned hydrocarbon and particulate emissions is experimentally determined in a spray guided direct injection engine. Particulate number concentration and size distribution were measured using a Cambustion DMS500. These data are presented for different air fuel ratios, loads, ignition timings and injection timings. In addition, the ASTM D86 distillation curve was modeled using the binary activity coefficients method for the fuel blends used in the experiments.
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

2008-04-14
2008-01-0469
The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Technical Paper

Optical Techniques that can be Applied to Investigate GDI Engine Combustion

2017-09-04
2017-24-0046
The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
Technical Paper

The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines

2016-04-05
2016-01-0700
Knocking combustion places a major limit on the performance and efficiency of spark ignition engines. Spontaneous ignition of the unburned air-fuel mixture ahead of the flame front leads to a rapid release of energy, which produces pressure waves that cause the engine structure to vibrate at its natural frequencies and produce an audible ‘pinging’ sound. In extreme cases of knock, increased temperatures and pressures in the cylinder can cause severe engine damage. Damage is thought to be caused by thermal strain effects that are directly related to the heat flux. Since it will be the maximum values that are potentially the most damaging, then the heat flux needs to be measured on a cycle-by-cycle basis. Previous work has correlated heat flux with the pressure fluctuations on an average basis, but the work here shows a correlation on a cycle-by-cycle basis. The in-cylinder pressure and surface temperature were measured using a pressure transducer and eroding-type thermocouple.
Technical Paper

Particulate Matter and Hydrocarbon Emissions Measurements: Comparing First and Second Generation DISI with PFI in Single Cylinder Optical Engines

2006-04-03
2006-01-1263
A Spray Guided Direct Injection (SGDI) engine has been shown to emit less Particulate Matter (PM) than a first generation (wall guided) Direct Injection Spark Ignition (DISI) engine. The reduction is attributed to the reduced incidence of fuel-wall impingement and higher fuel injection pressure. The extent to which this is true was investigated by comparison between single cylinder SGDI and DISI engines. Both engines were also operated with conventional port injection to provide a baseline. Feedgas PM number concentration and size spectra were measured using a Cambustion differential mobility spectrometer for the fuels iso-octane and toluene with a range of Air-Fuel Ratios (AFRs), ignition and injection timings.
Technical Paper

In-Cylinder Mixture Excursions in a Port-Injected Engine During Fast Throttle Opening

1994-03-01
940382
Fast throttle opening in port-injected gasoline engines often results in a lean air-fuel ratio excursion lasting several engine cycles. Even when the engine is equipped with a three-way catalyst this lean excursion can lead to high tailpipe emissions. This paper will describe an in-cylinder method of measuring these air-fuel ratio excursions, using a fast flame ionisation detector. Examples will be given of air-fuel ratio excursions obtained on a four-valve-per-cylinder sequentially-injected gasoline engine equipped with a lambda sensor. The air-fuel ratio excursions together with measurements of the engine air flow are used to estimate me build up of the fuel film on the inlet manifold walls. Whilst air-fuel ratio excursions have been recorded previously by other investigators, their results were obtained from exhaust gas analysis using fast oxygen sensors.
X