Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Technical Paper

Development of A New Dynamic Rollover Test Methodology for Heavy Vehicles

2017-03-28
2017-01-1457
Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Technical Specifications of the SID-IIs Dummy

1995-11-01
952735
The SID-IIs is a small [s], second-generation [II] Side Impact Dummy [SID] which has the anthropometry of a 5th percentile adult female. It has a mass of 43.5 kg, a seated height of 790 mm, and over 100 available data channels. Based on the height and mass, this is equivalent to an average 12-13 year old adolescent. The state-of-the-art SID-IIs has special application in evaluating the performance of side impact airbags. The dummy has undergone prototype testing and will shortly be available for worldwide evaluation. This paper describes the technical details of the dummy, its biomechanical design targets, how well it met those targets, its validation requirements, and its instrumentation. The dummy is the product of a joint development agreement between the Occupant Safety Research Partnership (OSRP) of USCAR and First Technology Safety Systems.
Technical Paper

Repeatability Evaluation of the Pre-Prototype NHTSA Advanced Dummy Compared to the Hybrid III

2000-03-06
2000-01-0165
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in repeated sled tests under 3 different restraint systems. The restraint systems considered are: the airbag alone, the 3-point belt alone, and a combined use of the airbag and the 3-point belt. Various time-histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in order to study their repeatability. The Hybrid III appears to be more repeatable than the NHTSA advanced dummy in its response in one case, that of restraint with the 3-point belt alone. The response of the NHTSA advanced dummy in other two restraint modes, the airbag alone and the combination of 3-point belt and airbag, appears to be no less repeatable than that of Hybrid III in this series of tests.
X