Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Behaviour of Human Surrogates Thorax under Belt Loading

1990-10-01
902310
To estimate the behaviour of the thorax of the human cadaver and Hybrid III a total of 33 belt impact tests were performed with the two surrogates. These tests have shown that the Hybrid III thorax is stiffer than that of the cadaver and that the internal thoracic deflection transducer may not necessarily record the maximum thoracic deflection. The belt load was lower value with the cadavers, which confirms the differences in stiffness. A belt force of 10 KN in the cadaver tests was associated with an average of 6 rib fractures. If we consider the relationship between the thoracic deflection and the number of rib fracture cadavers showing 5 or more rib fractures sustained an external thoracic deflection at least of 7.5 cm measured at the mid sternum. The analysis of V*C parameter indicates an average V*C value of 0.77 for 6 rib fractures, and the values of V*C measured on Hybrid III are sligthly lower than those of cadaver tests.
Technical Paper

Comparison of Hybrid III and Human Cadaver Thorax Deformations Loaded by a Thoracic Belt

1994-11-01
942209
Injuries to the thorax in frontal impact accidents remain an important problem even for restrained occupants. During a frontal accident a significant portion of the forces restraining the occupant pass through the thoracic belt and deform the chest with the possibility of serious thoracic injuries. It is therefore important to understand the deformation of the human thorax when loaded by a thoracic belt and to understand how accurately crash dummies used in standard tests reproduce these deformations. This paper describes results of 19 tests in which a diagonal shoulder belt dynamically loaded the thorax of unembalmed cadavers and dummies (1). In all the tests, thoracic external deformations were measured using string potentiometers and two External Peripheral Instrument for Deformation Measurement (EPIDM) transducers (2).
X