Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

On Maximizing Argon Engines' Performance via Subzero Intake Temperatures in HCCI Mode at High Compression Ratios

2020-04-14
2020-01-1133
The improvement of the indicated thermal efficiency of an argon power cycle (replacing nitrogen with argon in the combustion reaction) is investigated in a CFR engine at high compression ratios in homogeneous charge compression ignition (HCCI) mode. The study combines the two effects that can increase the thermodynamic efficiency as predicted by the ideal Otto cycle: high specific heat ratio (provided by argon), and high compression ratios. However, since argon has relatively low heat capacity (at constant volume), it results in high in-cylinder temperatures, which in turn, leads to the occurrence of knock. Knock limits the feasible range of compression ratios and further increasing the compression ratio can cause serious damage to the engine due to the high pressure rise rate caused by advancing the combustion phasing.
Technical Paper

Demonstrating Optimum HCCI Combustion with Advanced Control Technology

2009-06-15
2009-01-1885
We have converted a Caterpillar 3406 natural gas spark ignited engine to HCCI mode and used it as a test bed for demonstrating advanced control methodologies. Converting the engine required modification of most engine systems: piston geometry, starting, fueling, boosting, and (most importantly) controls. We implemented a thermal management system consisting of a recuperator that transfers heat from exhaust to intake gases and a dual intake manifold that permits precise cylinder-by-cylinder ignition control. Advanced control methodologies are used for (1) minimizing cylinder-to-cylinder combustion timing differences caused by small variations in temperature or compression ratio; (2) finding the combustion timing that minimizes fuel consumption; and (3) tuning the controller parameters to improve transient response.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

2001-05-07
2001-01-1895
A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbo-charged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm.
Technical Paper

α-Pinene - A High Energy Density Biofuel for SI Engine Applications

2016-10-17
2016-01-2171
This study proposes a novel biofuel for spark ignition (SI) engine, α-pinene (C10H16), which is non-oxygenated and thus has a gravimetric energy density comparable to that of hydrocarbon fuels. The ignition characteristics of α-pinene were evaluated in an ignition quality tester (IQT) under standard temperature and pressure conditions. The measured ignition delay time (IDT) of α-pinene is 10.5 ms, which is lower than that of iso-octane, 17.9 ms. The estimated research octane number (RON) for pinene from IQT is 85. A temperature sweep in IQT showed that that α-pinene is less reactive at low temperatures, but more reactive at high temperatures when compared to isooctane. These results suggest that α-pinene has high octane sensitivity (OS) and is suitable for operation in turbocharged SI engines. With these considerations, α-pinene was operated in a single cylinder SI engine.
Technical Paper

Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine

2016-10-17
2016-01-2180
The auto-ignition characteristics of diethyl ether (DEE)/ethanol mixtures are investigated in compression ignition (CI) engines both numerically and experimentally. While DEE has a higher derived cetane number (DCN) of 139, ethanol exhibits poor ignition characteristics with a DCN of 8. DEE was used as an ignition promoter for the operation of ethanol in a CI engine. Mixtures of DEE and ethanol (DE), i.e., DE75 (75% DEE + 25% ethanol), DE50 (50% DEE + 50% ethanol) and DE25 (25% DEE + 75% ethanol), were tested in a CI engine. While DE75 and DE50 auto-ignited at an inlet air pressure of 1.5 bar, DE25 failed to auto-ignite even at boosted pressure of 2 bar. The peak in-cylinder pressure for diesel and DE75 were comparable, while DE50 showed reduced peak in-cylinder pressure with delayed start of combustion (SOC). Numerical simulations were conducted to study the engine combustion characteristics of DE mixture.
Technical Paper

Knock Prediction Using a Simple Model for Ignition Delay

2016-04-05
2016-01-0702
An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately.
Technical Paper

Effect of Timing and Location of Hotspot on Super Knock during Pre-ignition

2017-03-28
2017-01-0686
Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed.
Technical Paper

HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling

2000-03-06
2000-01-0328
Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.
Technical Paper

Effectiveness of Fuel Enrichment on Knock Suppression in a Gasoline Spark-Ignited Engine

2018-09-10
2018-01-1665
Knock, and more recently, super-knock, have been limiting factors on improving engine efficiency. As a result, engines often operate rich at high loads to avoid damage resulting from knock and protect the after-treatment system from excessive thermal stress. In this work, port-fuel injection and direct injection of excess fuel is explored as a mechanism to suppress knock and super-knock. Under naturally aspirated conditions, increasing the fuel enrichment initially increases knock intensity. However, further increasing fuel enrichment subsequently decreases knock intensity. The competing mechanism from calorific value and latent heat of vaporization can be used to explain the phenomenon. However, when directly injecting the excess fuel after the spark plug has been fired, knock intensity monotonically decreases with increasing fuel quantity. This decrease is shown to be due to fuel quenching the flame that is propagating from spark location.
Technical Paper

Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition

2018-09-10
2018-01-1678
Stochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends.
Technical Paper

Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition

2019-04-02
2019-01-0257
Pre-ignition is an abnormal engine combustion phenomenon where the inducted fuel-air charge ignites before the spark ignition. This premature combustion phenomenon often leads to heavy knocking events. The mixture preparation plays a critical role in pre-ignition tendency for a given load. Literature shows efforts made towards improving pre-ignition-limited-IMEP by splitting the injection pulse into multiple pulses. In this study, two direct injectors are used in a single cylinder research engine. A centrally mounted direct injector was used to inject Coryton Gasoline (RON 95) fuel early in the intake stroke. A second fluid was injected late in the compression stroke to suppress pre-ignition. The fluids used in the second direct injector was varied to see the effects of the molecule and its physical and chemical property on pre-ignition suppression tendency. Methanol, ethanol, water, and gasoline were tested as second fluid.
Technical Paper

Mechanism Triggering Pre-Ignition in a Turbo-Charged Engine

2019-04-02
2019-01-0255
Pre-ignition in modern engines is largely attributed to oil-fuel mixture droplets igniting before the spark timing. Researchers have also found pre-ignition events to be triggered by high hydrocarbon emissions from the previous cycle as well as late spark timing in the previous cycle. Additionally, an ideally scavenged engine was not found to be limited by pre-ignition. These observations point to a significant role of residuals in triggering pre-ignition events. Current work studies pre-ignition in a probabilistic approach. The effect of residuals and in-cylinder thermodynamic state is studied by varying the exhaust back pressure and intake air temperature respectively. Experiments were performed with a fixed mass flow rate of air + fuel and intake air temperature while the exhaust back pressure was varied. Intake air pressure varied in response to fixed intake temperature. Pre-ignition and super-knock count increased with increasing exhaust back pressure.
Technical Paper

Pre-ignition Detection Followed by Immediate Damage Mitigation in a Spark-Ignited Engine

2021-04-06
2021-01-0437
Pre-ignition remains a significant bottleneck to further downsizing and downspeeding technologies employed for reducing CO2 emissions in modern turbocharged spark-ignited engines. Pre-ignition, which occurs rarely, may lead to high peak pressures that auto-ignite the entire charge before TDC. The resulting high-pressure oscillations are known as super-knock, leading to sudden and permanent hardware damage to the engine. Over the years, numerous researchers have investigated the stochastic phenomenon’s source and concluded that there is a role of lubricant additives, deposits, gasoline properties, and hot surfaces in triggering pre-ignition. No single source has been identified; the research continues. Here, we take a different approach; rather than continue the search for the source(s) of super-knock, we explore mitigating super-knock by detecting pre-ignition early enough to take immediate evasive action.
Technical Paper

Knock and Pre-Ignition Limits on Utilization of Ethanol in Octane-on-Demand Concept

2019-09-09
2019-24-0108
Octane-on-Demand (OoD) is a promising technology for reducing greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for low and mid load operating conditions, and a high-octane additive is added at high load operating conditions. Researchers have focused on the minimum ethanol content required for operating at high load conditions when the low-octane fuel becomes knock limited. However, it is also widely known that ethanol has a high tendency to pre-ignite, which has been linked with its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower stoichiometric air-fuel ratio, requiring a larger injected fuel mass per cycle. A larger fuel mass increases the potential for oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence, the limits on ethanol addition owing to pre-ignition also need consideration before the technology can be implemented.
Technical Paper

HCCI Engine Control by Thermal Management

2000-10-16
2000-01-2869
This work investigates a control system for HCCI engines, where thermal energy from exhaust gas recirculation (EGR) and compression work in the supercharger are either recycled or rejected as needed. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the restrictions of low NOx and peak cylinder pressure. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and RPM. For zero torque (idle), the optimizer determines operating conditions that result in minimum fuel consumption. The optimizer is also used for determining the maximum torque that can be obtained within the operating restrictions of NOx and peak cylinder pressure.
Journal Article

Fuel-Dithering Optimization of Efficiency of TWC on Natural Gas IC Engine

2015-04-14
2015-01-1043
Steady-state, transient and dithering characteristics of emission conversion efficiencies of three-way catalysts on natural gas IC engine were investigated experimentally on a single-cylinder CFR engine test bench. Steady-state runs were conducted as references for specific engine emission levels and corresponding catalyst capacities. The steady-state data showed that conversion of HC will be the major problem since conversion of HC was effective only for a very narrow range of exhaust mixture. Unsteady exploration runs with both lean-to-rich and rich-to-lean transitions were conducted. These results were interpreted with a time scale analysis, according to which a qualitative oxygen storage model was proposed featuring the difference between oxygen absorption and desorption rates on the palladium catalysts.
X