Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Oxygenated Fuels and RVP on Automotive Emissions - Auto/Oil Air Quality Improvement Program

1992-02-01
920326
Exhaust and evaporative emissions were measured as a function of gasoline composition and fuel vapor pressure in a fleet of 20 1989 vehicles. Eleven fuels were evaluated; four hydrocarbon only, four splash blended ethanol fuels (10 vol %), two methyl tertiary-butyl ether (MTBE) blends (15 vol %) and one ethyl tertiary-butyl ether (ETBE) blend (17 vol %). Reid vapor pressures were between 7.8 and 9.6 psi. Exhaust emission results indicated that a reduction in fuel Reid vapor pressure of one psi reduced exhaust HC and CO. Adding oxygenates reduced exhaust HC and CO but increased NOx. Results of evaporative emissions tests on nineteen vehicles indicated a reduction in diurnal emissions with reduced Reid vapor pressure in the non-oxygenated and ethanol blended fuels. However, no reduction in diurnal emissions with the MTBE fuel due to Reid vapor pressure reduction was observed. Reducing Reid vapor pressure had no statistically significant effect on hot soak emissions.
Technical Paper

Fuel Composition Effects on Automotive Fuel Economy - Auto/Oil Air Quality Improvement Research Program

1993-03-01
930138
Fuel economy measurements from portions of Phase I of the Auto/Oil Air Quality Improvement Research Program were analyzed. The following fuel variables were examined: aromatics, olefins, T90, RVP, and various oxygenates (MTBE, ETBE and ethanol). Two vehicle fleets were tested: twenty 1989 vehicles and fourteen 1983-1985 vehicles. Three measures of fuel economy were analyzed. EPA Fuel Economy used the calculation defined in the Federal Register and is an attempt to correct for changes in fuel properties. Volumetric Fuel Economy is based on a carbon balance calculation and is a measure of the actual volume of gasoline burned. Energy Specific Fuel Economy is a measure of fuel economy based on energy content. The following fuel changes resulted in reductions of Volumetric Fuel Economy in both fleets: reduced aromatics, reduced olefins, reduced T90, and addition of oxygenates. Changes in RVP did not have a significant effect on fuel economy.
Technical Paper

Emissions with E85 and Gasolines in Flexible/Variable Fuel Vehicles - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952508
Exhaust and evaporative emissions from three flexible/variable fuel vehicles (FFV/VFV) were measured as the vehicles operated on E85 fuel (a mixture of 85% ethanol and 15% gasoline) or on gasoline. One vehicle was a production vehicle designed for ethanol fuels and sold in 1992-93 and the other two vehicles were prototypes which were recalibrated 1992 model year methanol FFV's. The gasolines tested were Industry Average Fuel A and a reformulated gasoline Fuel C2 that met California 1996 regulatory requirements. The gasoline component of Fuel E85 was based on the reformulated gasoline. The major findings from this three-vehicle program were that E85 reduced NOx 49% compared to Fuel A and 37% compared to Fuel C2, but increased total toxics 108% (5 mg/mi) and 255% (20 mg/mi), respectively, primarily by increasing acetaldehyde. The NOx effect was significant for both engine-out and tailpipe emissions.
X